This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal behavior within the interfaces. In a first test series, temperature history is recorded within the metal/composite stack interfaces using preinstalled thermocouples.
View Article and Find Full Text PDFIn this study, a thermomechanical model is developed to simulate a finite drilling set of Carbon Fibre Reinforced Polymers (CFRP)/Titanium (Ti) hybrid structures widely known for their energy saving performance. The model applies different heat fluxes at the trim plane of the two phases of the composite, owing to cutting forces, in order to simulate the temperature evolution at the workpiece during the cutting step. A user-defined subroutine VDFLUX was implemented to address the temperature-coupled displacement approach.
View Article and Find Full Text PDF