Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface.
View Article and Find Full Text PDFObjective: Electroconvulsive therapy (ECT) is one of the most effective options available for treating depressive and psychotic symptoms in a variety of disorders. While the exact mechanism of ECT is unclear, it is known to increase metabolism and blood flow specifically in the anterior cingulate cortex (ACC). The ACC is a cortical generator of theta rhythms, which are abnormal in patients with depression and psychotic disorders.
View Article and Find Full Text PDFStudies of SSEP provide unique opportunities for investigating physioanatomic substrates of sensory pathway and cognitive functions of the sensory system. Progress of clinical investigation and application of SSEP have been stalled in more recent years, although SSEP still remain a useful tool for diagnosis of various neurologic disorders and for the monitoring of spinal cord function during surgery. Reflecting complex sensory system in human, scalp-recorded SSEP consists of multiple waves, having different distribution, amplitude, and latencies among different electrodes.
View Article and Find Full Text PDF