Publications by authors named "Malcolm Stevens"

It is 40 years since the publication of the patent that announced the imidazotetrazines temozolomide and mitozolomide to the world and 30 since the discovery that they function as prodrugs of alkyldiazonium reactive intermediates. Temozolomide combined with radiation is established as the first-line treatment for glioma but despite the attentions of the inventors and others, further examples of this intriguing ring system have yet to enter the clinic.

View Article and Find Full Text PDF

We describe the design, organic synthesis, and characterization, including X-ray crystallography, of a series of novel analogues of the clinically used antitumor agent temozolomide, together with their in vitro biological evaluation. The work has resulted in the discovery of a new series of anticancer imidazotetrazines that offer the potential to overcome the resistance mounted by tumors against temozolomide. The rationally designed compounds that incorporate a propargyl alkylating moiety and a thiazole ring as isosteric replacement for a carboxamide, are readily synthesized (gram-scale), exhibit defined solid-state structures, and enhanced growth-inhibitory activity against human tumor cell lines, including MGMT-expressing and MMR-deficient lines, molecular features that confer tumor resistance.

View Article and Find Full Text PDF

The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with -methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. Hence, a potent N(3)-propargyl analogue (N3P) was derived, which not only evades MGMT but also remains effective in mismatch repair deficient cells. Due to the poor pharmacokinetic profile of N3P ( < 1 h) and to bypass the blood-brain barrier, we proposed convection enhanced delivery (CED) as a method of administration to decrease dose and systemic toxicity.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a grade IV astrocytoma, which is the most aggressive form of brain tumor. The standard of care for this disease includes surgery, radiotherapy and temozolomide (TMZ) chemotherapy. Poor accumulation of TMZ at the tumor site, tumor resistance to drug, and dose-limiting bone marrow toxicity eventually reduce the success of this treatment.

View Article and Find Full Text PDF

Stomach cancer is the fourth most common cancer worldwide. Identification of novel molecular therapeutic targets and development of novel treatments are critical. Against a panel of gastric carcinoma cell lines, the activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) was investigated.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most common and lethal brain tumour-type. The current standard of care includes Temozolomide (TMZ) chemotherapy. However, inherent and acquired resistance to TMZ thwart successful treatment.

View Article and Find Full Text PDF

Temozolomide (TMZ) is the standard of care chemotherapeutic agent used in the treatment of glioblastoma multiforme. Cytotoxic -methylguaine lesions formed by TMZ are repaired by -methyl-guanine DNA methyltransferase (MGMT), a DNA repair protein that removes alkyl groups located at the -position of guanine. Response to TMZ requires low MGMT expression and functional mismatch repair.

View Article and Find Full Text PDF

A series of 3-(benzyl-substituted)-imidazo[5,1-]-1,2,3,5-tetrazines () and related derivatives with 3-heteromethyl groups has been synthesised and screened for growth-inhibitory activity against two pairs of glioma cell lines with temozolomide-sensitive and -resistant phenotypes dependent on the absence/presence of the DNA repair protein -methylguanine-DNA methyltransferase (MGMT). In general the compounds had low inhibitory activity with GI values >50 μM against both sets of cell lines. Two silicon-containing derivatives, the TMS-methylimidazotetrazine () and the SEM-analogue (), showed interesting differences: compound () had a profile very similar to that of temozolomide with the MGMT+ cell lines being 5 to 10-fold more resistant than MGMT- isogenic partners; the SEM-substituted compound () showed potency across all cell lines irrespective of their MGMT status.

View Article and Find Full Text PDF

The efficacy of temozolomide (TMZ) treatment for cancers is currently limited by inherent or the development of resistance, particularly, but not exclusively, due to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) in a significant proportion of tumors. We have found that TMZ analog C8-methyl imidazole tetrazine (PMX 465) displayed good anticancer activity against the colorectal carcinoma HCT116 cells which are MGMT-overexpressing and mismatch repair (MMR)-deficient. In this study, we found that PMX 465 could downregulate the expression of MGMT in HCT116 cells at the protein and mRNA levels.

View Article and Find Full Text PDF

The imidazole ring is widespread in biologically active compounds, and hence imidazole-containing scaffolds are useful starting points for drug discovery programmes. We report the synthesis of a series of novel imidazole-containing compounds fused with either phenanthrene or phenanthroline, which show enhanced growth inhibitory potency against human colon, breast and melanoma cancer cell lines, as well as evidence of inhibition of the molecular chaperone heat shock protein 70 (Hsp70) pathway in cells, as shown by depletion of downstream oncogenic client proteins of the Hsp90 chaperone pathway, and induction of apoptosis.

View Article and Find Full Text PDF

Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.

View Article and Find Full Text PDF

Biophysical studies of ligand interactions with three human telomeric repeat sequences (d(AGGG(TTAGGG)n, n = 3, 7 and 11)) show that an oxazole-based 'click' ligand, which induces parallel folded quadruplexes, preferentially stabilises longer telomeric repeats providing evidence for selectivity in binding at the interface between tandem quadruplex motifs.

View Article and Find Full Text PDF

The pentacyclic acridinium salt RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate, compound 1) is one of the most interesting DNA G-quadruplex binding molecules due to its high efficacy in tumor cell growth inhibition both in in vitro models and in vivo against human tumor xenografts in combination with conventional chemotherapeutics. Despite compound 1 having desirable chemical and pharmaceutical properties, its potential as a therapeutic agent is compromised by off-target effects on cardiovascular physiology. In this paper we report a new series of structurally-related compounds which were developed in an attempt to minimize its off-target profile, but maintaining the same favorable chemical and pharmacological features of the lead compound.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme (GBM) treatment relies on temozolomide (TMZ), but resistance due to MGMT and MMR deficiencies hampers effectiveness.
  • Researchers developed two TMZ analogs (propargyl and sulfoxide variants) which showed improved potency in MGMT and MMR-deficient cell lines compared to standard TMZ.
  • These analogs induce cell cycle arrest, apoptosis, and autophagy in resistant GBM cells, suggesting potential as a broader treatment option for various malignancies that are difficult to treat.
View Article and Find Full Text PDF

Background: Telomeric 3' overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure.

Methods: We exposed brain tumor cells to the G4 ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) and investigated proliferation, cell cycle dynamics, telomere length, telomerase activity and activated c-Myc levels.

View Article and Find Full Text PDF

Quadruplexes DNA are present in telomeric DNA as well as in several cancer-related gene promoters and hence affect gene expression and subsequent biological processes. The conformations of G4 provide selective recognition sites for small molecules and thus these structures have become important drug-design targets for cancer treatment. The DNA G-quadruplex binding pentacyclic acridinium salt RHPS4 (1) has many pharmacological attributes of an ideal telomere-targeting agent but has undesirable off-target liabilities.

View Article and Find Full Text PDF

Quinols have been developed as a class of potential anti-cancer compounds. They are thought to act as double Michael acceptors, forming two covalent bonds to their target protein(s). Quinols have also been shown to have activity against the parasite Trypanosoma brucei, the causative organism of human African trypanosomiasis, but they demonstrated little selectivity over mammalian MRC5 cells in a counter-screen.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most common aggressive adult primary tumour of the central nervous system. Treatment includes surgery, radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. TMZ is an alkylating agent prodrug, delivering a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine).

View Article and Find Full Text PDF

Both 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F-203; NSC 703786) and 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610; NSC 721648) are antitumor agents with novel mechanism(s). Previous studies have indicated that cytochrome (CYP) P450 1A1 is crucial for 5F-203 activity. In the present study, we investigated the functional role of 2 newly identified CYP P450 enzymes, CYP2S1 and CYP2W1, in mediating antitumor activity of benzothiazole compounds.

View Article and Find Full Text PDF

Resistance to temozolomide (TMZ), conferred by O6-methylguanine-DNA methyltransferase (MGMT) or mismatch repair (MMR) deficiency, presents obstacles to successful glioblastoma multiforme (GBM) treatment. Activities of novel TMZ analogs, designed to overcome resistance, were tested against isogenic SNB19 and U373 GBM cell lines (V = vector control, low MGMT; M = MGMT overexpression). TMZ and triazene MTIC demonstrated >9-fold resistance in SNB19M cells (cf SNB19V).

View Article and Find Full Text PDF

Purpose: We previously reported that the G-quadruplex (G4) ligand RHPS4 potentiates the antitumor activity of camptothecins both in vitro and in tumor xenografts. The present study aims at investigating the mechanisms involved in this specific drug interaction.

Experimental Design: Combination index test was used to evaluate the interaction between G4 ligands and standard or novel Topo I inhibitors.

View Article and Find Full Text PDF

Better drugs are urgently needed for the treatment of African sleeping sickness. We tested a series of promising anticancer agents belonging to the 4-substituted 4-hydroxycyclohexa-2,5-dienones class ("quinols") and identified several with potent trypanocidal activity (EC(50) < 100 nM). In mammalian cells, quinols are proposed to inhibit the thioredoxin/thioredoxin reductase system, which is absent from trypanosomes.

View Article and Find Full Text PDF
Article Synopsis
  • Thioredoxin (Trx) is crucial for maintaining redox balance in cells, and pathogens like Mycobacterium tuberculosis (Mtb) utilize its redox system for survival against environmental stress.
  • Researchers have determined the crystal structure of a Trx mutant (MtbTrxCC40S) in complex with the inhibitor PMX464, revealing that PMX464 binds covalently to an active site residue while also mimicking natural ligand interactions.
  • The binding of PMX464 induces conformational changes in the MtbTrxCC40S structure compared to its unbound form, forming a novel 2:1 dimer complex that suggests new avenues for designing targeted Trx inhibitors for tuberculosis treatment.
View Article and Find Full Text PDF

4-Ethynyl-4-hydroxycyclohexa-2,5-dien-1-one 5 undergoes cycloaddition reactions with a range of substituted azides in the presence of copper salts to form 1,4-disubstituted triazoles 8-11 bearing the 4-hydroxycyclohexa-2,5-dien-1-one (quinol) pharmacophore; one example of an isomeric 1,5-disubstituted triazole 12 was formed from 5 and benzyl azide in the presence of a ruthenium catalyst. Compounds were screened for growth-inhibitory activity against five cancer cell lines of colon, breast and lung origin, but were overall less potent than the benzothiazolyl- and indolyl-substituted quinols 2 and 3.

View Article and Find Full Text PDF