Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels.
View Article and Find Full Text PDFConsiderable knowledge regarding skeletal muscle physiology and disease has been gleaned from cultured myoblastic cell lines or isolated primary myoblasts. Such muscle cultures can be induced to differentiate into multinucleated myotubes that become striated. However they in general do not fully mature and therefore do not model mature muscle.
View Article and Find Full Text PDFCholesterol gallstones are solid calculi that form in the gallbladder from bile constituents and chiefly comprise cholesterol. Cholesterol gallstones are prevalent and costly for healthcare systems. In addition to various environmental factors, genetic risk contributes substantially to gallstone susceptibility.
View Article and Find Full Text PDFTo identify additional loci that influence lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) mapping in offspring of PERA/EiJxI/LnJ and PERA/EiJxDBA/2J intercrosses and in a combined data set from both crosses after 8 weeks of consumption of a high fat-diet. Most QTLs identified were concordant with homologous chromosomal regions that were associated with lipoprotein levels in human studies. We detected significant new loci for HDL cholesterol levels on chromosome (Chr) 5 (Hdlq34) and for non-HDL cholesterol levels on Chrs 15 (Nhdlq9) and 16 (Nhdlq10).
View Article and Find Full Text PDFTo examine further the genetic determinants of cholesterol gallstone susceptibility in inbred mice, we performed quantitative trait locus (QTL) analysis of an intercross of gallstone-susceptible PERA/EiJ and gallstone-resistant DBA/2J inbred mice. Three hundred twenty-four F2 offspring were phenotyped for cholelithiasis during consumption of a lithogenic diet and genotyped using microsatellite markers. Linkage analysis was performed by interval mapping.
View Article and Find Full Text PDFQuantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstone-promoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans.
View Article and Find Full Text PDFRodent inbred line crosses are widely used to map genetic loci associated with complex traits. This approach has proven to be powerful for detecting quantitative trait loci (QTL); however, the resolution of QTL locations, typically approximately 20 cM, means that hundreds of genes are implicated as potential candidates. We describe analytical methods based on linear models to combine information available in two or more inbred line crosses.
View Article and Find Full Text PDFTo determine the genetic contribution to variation among lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) analyses on an intercross between mouse strains RIIIS/J and 129S1/SvImJ. Male mice of the parental strains and the reciprocal F1 and F2 populations were fed a high-cholesterol, cholic acid-containing diet for 8-12 wk. At the end of the feeding period, plasma total, high-density lipoprotein (HDL), and non-HDL cholesterol were determined.
View Article and Find Full Text PDFTo identify genetic determinants of lipoprotein levels, we are performing quantitative trait locus (QTL) analysis on a series of mouse intercrosses in a "daisy chain" experimental design, to increase the power of detecting QTL and to identify common variants that should segregate in multiple intercrosses. In this study, we intercrossed strains CAST/Ei and 129S1/SvImJ, determined HDL, total, and non-HDL cholesterol levels, and performed QTL mapping using Pseudomarker software. For HDL cholesterol, we identified two significant QTL on chromosome (Chr) 1 (Hdlq5, 82 cM, 60-100 cM) and Chr 4 (Hdlq10, 20 cM, 10-30 cM).
View Article and Find Full Text PDFBackground & Aims: Cholesterol gallstone formation is a complex genetic trait. To identify additional cholesterol gallstone susceptibility loci, we performed a quantitative trait locus analysis using an intercross of PERA/Ei and I/LnJ inbred strains of mice.
Methods: Mice of both sexes were examined for gallstone weight and evaluated according to a scoring system for the physical chemistry of cholelithiasis during feeding of a lithogenic diet.
Cholesterol gallstone formation is a response to interactions between multiple genes and environmental stimuli. To determine the subset of cholesterol gallstone susceptibility (Lith) genes possessed by strains CAST/Ei (susceptible) and 129S1/SvImJ (resistant), we conducted quantitative trait locus (QTL) analyses of an intercross between these strains. Parental strains and F(1) mice of both genders were evaluated for gallstone formation after consumption of a lithogenic diet for 8 wk.
View Article and Find Full Text PDFA complex genetic basis determines the individual predisposition to develop cholesterol gallstones in response to environmental factors. We employed quantitative trait locus/loci (QTL) analyses of an intercross between inbred strains CAST/Ei (susceptible) and DBA/2J (resistant) to determine the subset of gallstone susceptibility (Lith) genes these strains possess. Parental and first filial generation mice of both genders and male intercross offspring were evaluated for gallstone formation after feeding a lithogenic diet.
View Article and Find Full Text PDFTo investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6).
View Article and Find Full Text PDF7-Ketocholesterol (7KC) is a major oxysterol found in atherosclerotic plaque and is believed to be derived both endogenously and exogenously (from the diet). Previously, we have demonstrated that subsequent to hepatic lipoprotein uptake, 7KC delivered in a model chylomicron remnant lipid emulsion is metabolised more rapidly and excreted into the intestinal tract and faeces to a much greater extent than simultaneously administered cholesterol. Furthermore, we have shown that human 7KC metabolism is dependent upon sterol 27-hydroxylase (27OHase).
View Article and Find Full Text PDF