Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema.
View Article and Find Full Text PDFc is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for during systemic infection, while inducing local, protective innate immune responses in oral models of infection.
View Article and Find Full Text PDFPurpose: Non-HIV cryptococcal meningoencephalitis (CM) in previously healthy individuals is often complicated by a post-infectious inflammatory response syndrome (c-PIIRS) characterized by neurologic deterioration after appropriate antifungal therapy with sterilization of CSF fungal cultures. c-PIIRS results from an excessive inflammatory response to fungal antigens released during fungal lysis, mediated by IFN-γ, IL-6, and activated T-helper cells, leading to immune-mediated host damage that responds to pulse-corticosteroid taper therapy (PCT). Typically, oral steroids may take up to a year to taper, and occasionally, patients will be refractory to steroid therapy or may demonstrate high-risk lesions such as those involving intracranial arteries.
View Article and Find Full Text PDF