Publications by authors named "Malcolm Gardner"

The RTS,S/AS01 vaccine provides partial protection against infection but determinants of protection and/or disease are unclear. Previously, anti-circumsporozoite protein (CSP) antibody titers and blood RNA signatures were associated with RTS,S/AS01 efficacy against controlled human malaria infection (CHMI). By analyzing host blood transcriptomes from five RTS,S vaccination CHMI studies, we demonstrate that the transcript ratio MX2/GPR183, measured 1 day after third immunization, discriminates protected from non-protected individuals.

View Article and Find Full Text PDF

The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P.

View Article and Find Full Text PDF

Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon.

View Article and Find Full Text PDF

High throughput immunomics is a powerful platform to discover potential targets of host immunity and develop diagnostic tests for infectious diseases. We screened the sera of Plasmodium vivax-exposed individuals to profile the antibody response to blood-stage antigens of P. vivax using a P.

View Article and Find Full Text PDF

After transmission by Anopheles mosquitoes, Plasmodium sporozoites travel to the liver, infect hepatocytes, and rapidly develop as intrahepatocytic liver stages (LS). Rodent models of malaria exhibit large differences in the magnitude of liver infection, both between parasite species and between strains of mice. This has been mainly attributed to differences in innate immune responses and parasite infectivity.

View Article and Find Full Text PDF

Malaria remains one of the most prevalent and lethal human infectious diseases worldwide. A comprehensive characterization of antibody responses to blood stage malaria is essential to support the development of future vaccines, sero-diagnostic tests, and sero-surveillance methods. We constructed a proteome array containing 4441 recombinant proteins expressed by the blood stages of the two most common human malaria parasites, P.

View Article and Find Full Text PDF

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis.

View Article and Find Full Text PDF

Vaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodent Plasmodium yoelii model. Protection is dependent on CD8(+) T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8(+) T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8(+) T cell phenotype and demonstrated significant upregulation of CD11c on CD3(+) CD8b(+) T cells in the liver, spleen, and peripheral blood.

View Article and Find Full Text PDF

We sequenced the genome of Theileria orientalis, a tick-borne apicomplexan protozoan parasite of cattle. The focus of this study was a comparative genome analysis of T. orientalis relative to other highly pathogenic Theileria species, T.

View Article and Find Full Text PDF

The development of pre-erythrocytic Plasmodium vivax vaccines is hindered by the lack of in vitro culture systems or experimental rodent models. To help bypass these roadblocks, we exploited the fact that naturally exposed Fy- individuals who lack the Duffy blood antigen (Fy) receptor are less likely to develop blood-stage infections; therefore, they preferentially develop immune responses to pre-erythrocytic-stage parasites, whereas Fy+ individuals experience both liver- and blood-stage infections and develop immune responses to both pre-erythrocytic and erythrocytic parasites. We screened 60 endemic sera from P.

View Article and Find Full Text PDF

Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P.

View Article and Find Full Text PDF

Background: Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g.

View Article and Find Full Text PDF

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.

View Article and Find Full Text PDF

While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C.

View Article and Find Full Text PDF

The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P.

View Article and Find Full Text PDF

Motivation: The sequencing of the Plasmodium yoelii genome, a model rodent malaria parasite, has greatly facilitated research for the development of new drug and vaccine candidates against malaria. Unfortunately, only preliminary gene models were annotated on the partially sequenced genome, mostly by in silico gene prediction, and there has been no major improvement of the annotation since 2002.

Results: Here we report on a systematic assessment of the accuracy of the genome annotation based on a detailed analysis of a comprehensive set of cDNA sequences and proteomics data.

View Article and Find Full Text PDF

Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C.

View Article and Find Full Text PDF

East Coast fever, caused by the tick-borne intracellular apicomplexan parasite Theileria parva, is a highly fatal lymphoproliferative disease of cattle. The pathogenic schizont-induced lymphocyte transformation is a unique cancer-like condition that is reversible with parasite removal. Schizont-infected cell-directed CD8(+) cytotoxic T lymphocytes (CTL) constitute the dominant protective bovine immune response after a single exposure to infection.

View Article and Find Full Text PDF

Coccidioidomycosis is a respiratory disease of humans caused by the desert soil-borne fungal pathogens Coccidioides spp. Recurrent epidemics of this mycosis in the southwestern United States have contributed significantly to escalated health care costs. Clinical and experimental studies indicate that prior symptomatic coccidioidomycosis induces immunity against subsequent infection, and activation of T cells is essential for containment of the pathogen and its clearance from host tissue.

View Article and Find Full Text PDF

Transcriptome analysis can provide useful data for refining genome sequence annotation. Application of massively parallel signature sequencing (MPSS) revealed reproducible transcription, in multiple MPSS cycles, from 73% of computationally predicted genes in the Theileria parva schizont lifecycle stage. Signatures spanning consecutive exons confirmed 142 predicted introns.

View Article and Find Full Text PDF

Massively parallel signature sequencing (MPSS) was used to analyze the transcriptome of the intracellular protozoan Theileria parva. In total 1,095,000, 20 bp sequences representing 4371 different signatures were generated from T.parva schizonts.

View Article and Find Full Text PDF

Coccidioides posadasii is a fungal respiratory pathogen of humans that can cause disease in immunocompetent individuals. Coccidioidomycosis ranges from a mild to a severe infection. It is frequently characterized either as a persistent disease that requires months to resolve or as an essentially asymptomatic infection that can reactivate several years after the original insult.

View Article and Find Full Text PDF

We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells.

View Article and Find Full Text PDF

Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T.

View Article and Find Full Text PDF

Duffy antigen is the receptor used by Plasmodium vivax to invade erythrocytes. Consequently, individuals lacking Duffy antigen [Fy(-)] do not develop blood-stage infections. We hypothesized that naturally exposed Fy(-) humans may develop immune responses mainly to pre-erythrocytic stages and could be used to study acquired immunity to P.

View Article and Find Full Text PDF