Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations.
View Article and Find Full Text PDFSilicon (Si) is important in mitigating abiotic and biotic plant stresses, yet many agricultural soils, such as those of the rainfed production areas of the South African sugar industry, are deficient in plant-available Si, making Si supplementation necessary. However, Si uptake by sugarcane (Saccharum spp. hybrids) is limited even where silicate amendments improve soil Si status.
View Article and Find Full Text PDFThe stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae). Borer management options include appropriate nitrogen (N) and enhanced silicon (Si) nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33) and susceptible (N27) sugarcane cultivars, on E.
View Article and Find Full Text PDF1. Silicon (Si) has received increased attention as a nutrient capable of providing some measure of defence for plants against fungal pathogens, and insect and mammalian herbivores. 2.
View Article and Find Full Text PDF