Publications by authors named "Malcolm Fairbairn"

Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the decay of mesons produced in inelastic cosmic ray collisions.

View Article and Find Full Text PDF

We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1) gauge boson Z . We assume universal and rational U(1) charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1) charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion.

View Article and Find Full Text PDF

We consider the effect of the Gibbons-Hawking radiation on the inflaton in the situation where it is coupled to a large number of spectator fields. We argue that this will lead to two important effects - a thermal contribution to the potential and a gradual change in parameters in the Lagrangian which results from thermodynamic and energy conservation arguments. We present a scenario of hilltop inflation where the field starts trapped at the origin before slowly experiencing a phase transition during which the field extremely slowly moves towards its zero temperature expectation value.

View Article and Find Full Text PDF

Fluorescent dark matter has been suggested as a possible explanation of both the 3.5 keV excess in the diffuse emission of the Perseus Cluster and of the deficit at the same energy in the central active galaxy within that cluster, NGC 1275. In this work we point out that such a dark matter candidate can be searched for at the new X-ray laser facilities that are currently being built and starting to operate around the world.

View Article and Find Full Text PDF

The phase transition responsible for axion dark matter (DM) production can create large amplitude isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters, treating them as spatially extended objects.

View Article and Find Full Text PDF

We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

View Article and Find Full Text PDF

It is shown that the Sun can become partially transparent to high energy photons in the presence of a pseudoscalar. In particular, if the axion interpretation of the PVLAS result were true, then up to 2% of GeV energy gamma rays might pass through the Sun, while an even stronger effect is expected for some axion parameters. We discuss the possibilities of observing this effect.

View Article and Find Full Text PDF