Publications by authors named "Malcolm Cooke"

Objective: To identify 3D-printed temporal bone (TB) models that most accurately recreate cortical mastoidectomy for use as a training tool by comparison of different materials and fabrication methods.

Background: There are several different printers and materials available to create 3D-printed TB models for surgical planning and trainee education. Current reports using Acrylonitrile Butadiene Styrene (ABS) plastic generated via fused deposition modeling (FDM) have validated the capacity for 3D-printed models to serve as accurate surgical simulators.

View Article and Find Full Text PDF

This study investigates the osseointegration of poly(propylene fumarate) (PPF) with beta-tricalcium phosphate (beta-TCP) scaffolds in a critical-size (diameter, 1.6 cm), cranial defect in 4-month-old rabbits (n = 51), killed at 6 or 12 weeks. Two molecular weights of PPF were used to produce bilayer scaffolds with 0.

View Article and Find Full Text PDF

This pilot study investigates the osseointegration of four types of critical-size (1.5-cm diameter) rabbit cranial defect (n = 35) bone graft scaffolds. The first is a solid poly(propylene fumarate)/beta-tricalcium phosphate(PPF/beta-TCP) disk; the three remaining constructs contain a PPF/beta-TCP core coated with a 1-mm resorptive porous foam layer of PPF or PLGA [poly(DL-lactic-co-glycolic acid)], and bone marrow.

View Article and Find Full Text PDF

A novel approach to the manufacture of biodegradable polymeric scaffolds for tissue-engineering utilizing stereolithography (SLA) is presented. SLA is a three-dimensional (3D) printing method that uses an ultraviolet laser to photo-crosslink a liquid polymer substrate. The current generation of SLA devices provide a 3D printing resolution of 0.

View Article and Find Full Text PDF