Publications by authors named "Malcolm Cochran"

Van der Waals (vdW) magnets both allow exploration of fundamental 2D physics and offer a route toward exploiting magnetism in next generation information technology, but vdW magnets with complex, noncollinear spin textures are currently rare. We report here the syntheses, crystal structures, magnetic properties and magnetic ground states of four bulk vdW metal-organic magnets (MOMs): FeCl(pym), FeCl(btd), NiCl(pym), and NiCl(btd), pym = pyrimidine and btd = 2,1,3-benzothiadiazole. Using a combination of neutron diffraction and bulk magnetometry we show that these materials are noncollinear magnets.

View Article and Find Full Text PDF

Vascular calcification is a recognised source of morbidity among mid-age and elderly subjects. Its development follows classical mineralisation pathways, inhibited by acidosis. It is known that the final mechanism of tissue mineralization involves three processes, all of which are highly pH dependent.

View Article and Find Full Text PDF

A diamond cell optimized for single-crystal neutron diffraction is described. It is adapted for work at several of the single-crystal diffractometers of the Spallation Neutron Source and the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). A simple spring design improves portability across the facilities and affords load maintenance from offline pressurization and during temperature cycling.

View Article and Find Full Text PDF

A detailed understanding of the diffusion mechanisms of ions in pure and doped ionic liquids remains an important aspect in the design of new ionic-liquid electrolytes for energy storage. To gain more insight into the widely used imidazolium-based ionic liquids, the relationship between viscosity, ionic conductivity, diffusion coefficients, and reorientational dynamics in the ionic liquid 3-methyl-1-methylimidazolium bis(trifluoromethanesulfonyl)imide (DMIM-TFSI) with and without lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) was examined. The diffusion coefficients for the DMIM cation and the role of ion aggregates were investigated by using the quasielastic neutron scattering (QENS) and neutron spin echo techniques.

View Article and Find Full Text PDF

Adding vibrational spectroscopies to the arsenal of detection modes for microfluidics (mufluidics) offers benefits afforded by structurally descriptive identification of separated electrophoretic bands. We have previously applied surface-enhanced Raman spectroscopy (SERS) detection with nanocomposite metal-elastomer substrates as a detection mode in mufluidic channels. To create these mufluidic-SERS devices, silver-PDMS substrate regions are integrated into the architecture of a separation chip fabricated from PDMS or glass.

View Article and Find Full Text PDF