Publications by authors named "Malcolm Brenner"

Systemic administration of oncolytic viruses (OVs) is a promising approach for targeting metastatic solid tumors, but their anti-tumor activity is limited by pre-existing neutralizing antibodies against common human viruses. Therefore, investigators have developed OVs derived from non-human host viruses. Successful implementation of this strategy requires that the viral vector selectively infects and replicates within human cancer cells.

View Article and Find Full Text PDF

Interleukin-15 (IL-15) promotes the survival of T lymphocytes and enhances the antitumour properties of chimeric antigen receptor (CAR) T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy. Glypican-3 (GPC3) is expressed in a group of solid cancers, and here we report the evaluation in humans of the effects of IL-15 co-expression on GPC3-expressing CAR T cells (hereafter GPC3 CAR T cells). Cohort 1 patients ( NCT02905188 and NCT02932956 ) received GPC3 CAR T cells, which were safe but produced no objective antitumour responses and reached peak expansion at 2 weeks.

View Article and Find Full Text PDF

Systemic delivery of oncolytic and immunomodulatory adenoviruses may be required for optimal effects on human malignancies. Mesenchymal stromal cells (MSCs) can serve as delivery systems for cancer therapeutics due to their ability to transport and shield these agents while homing to tumors. We now use MSCs to deliver a clinically validated binary oncolytic and helper-dependent adenovirus combination (CAdVEC) to tumor cells.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.

View Article and Find Full Text PDF

In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control.

View Article and Find Full Text PDF

Purpose: T cells modified with chimeric antigen receptors (CARTs) have demonstrated efficacy for hematologic malignancies; however, benefit for patients with CNS tumors has been limited. To enhance T cell activity against GD2+ CNS malignancies, we modified GD2-directed CART cells (GD2.CARTs) with a constitutively active interleukin (IL)-7 receptor (C7R-GD2.

View Article and Find Full Text PDF

We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion.

View Article and Find Full Text PDF

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 10 T cells per m after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 10 CAR T cells per m after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome.

View Article and Find Full Text PDF

Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy. Glypican-3 (GPC3) is expressed in a group of solid cancers, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma.

View Article and Find Full Text PDF

Background Aims: Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain.

Methods: Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium.

View Article and Find Full Text PDF

Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells.

View Article and Find Full Text PDF

Background: The wider application of T cells targeting viral tumor-antigens via their native receptors is hampered by the failure to expand potent tumor-specific T cells from patients. Here, we examine reasons for and solutions to this failure, taking as our model the preparation of Epstein-Barr virus (EBV)-specific T cells (EBVSTs) for the treatment of EBV-positive lymphoma. EBVSTs could not be manufactured from almost one-third of patients, either because they failed to expand, or they expanded, but lacked EBV specificity.

View Article and Find Full Text PDF

We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells.

View Article and Find Full Text PDF

Cellular immunotherapy of cancer in the form of chimeric antigen receptor-modified T-cell therapy has become a standard treatment for lymphoid and more recently plasma cell malignancies. Although their successes in these cancers represent a breakthrough for adoptive cell therapy, there are several challenges to their continued growth in the field of cancer medicine. In this review, we discuss the progress made thus far toward achieving "off-the-shelf" accessibility of cell therapies that has the potential to greatly offset the costs associated with the current practice of making patient-specific products.

View Article and Find Full Text PDF

Background: Cell therapies for solid tumors are thwarted by the hostile tumor microenvironment (TME) and by heterogeneous expression of tumor target antigens. We address both limitations with a novel class of chimeric antigen receptors based on plant lectins, which recognize the aberrant sugar residues that are a 'hallmark' of both malignant and associated stromal cells. We have expressed in T cells a modified lectin from banana, H84T BanLec, attached to a chimeric antigen receptor (H84T-CAR) that recognizes high-mannose (asparagine residue with five to nine mannoses).

View Article and Find Full Text PDF

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement.

View Article and Find Full Text PDF

There is no consensus on the best donor for children with nonmalignant disorders and immune deficiencies in the absence of a matched related donor (MRD). We evaluated the 2-year overall survival (OS) after umbilical cord blood transplantation (UCBT) in patients with nonmalignant disorders from 2009 to 2020 enrolled in a prospective clinical trial using either 5/6 or 6/6 UCB as the cell source. Patients receive a fully ablative busulfan, cyclophosphamide, and fludarabine without serotherapy.

View Article and Find Full Text PDF

Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron').

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-mediated targeting of T lineage antigens for the therapy of blood malignancies is frequently complicated by self-targeting of CAR T cells or their excessive differentiation driven by constant CAR signaling. Expression of CARs targeting CD7, a pan-T cell antigen highly expressed in T cell malignancies and some myeloid leukemias, produces robust fratricide and often requires additional mitigation strategies, such as CD7 gene editing. In this study, we show fratricide of CD7 CAR T cells can be fully prevented using ibrutinib and dasatinib, the pharmacologic inhibitors of key CAR/CD3ζ signaling kinases.

View Article and Find Full Text PDF

Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a costimulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer.

View Article and Find Full Text PDF

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies.

View Article and Find Full Text PDF

Background Aims: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse.

Methods: For co-transduction with the authors' previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33.

View Article and Find Full Text PDF