Hypoxanthine is the main product of purine metabolic degradation and previous studies have revealed that it is present in the sheep CSF and plasma in micromolar concentrations. The aim of this study was to elucidate the transport of this molecule across the sheep choroid plexus epithelium (CPE) as a monolayer in primary culture, to explore the mechanism of uptake by the apical side of the CPE and investigate the metabolic changes inside the cell. The estimated permeability of the CPE monolayer for [14C]hypoxanthine, [14C]adenine and [14C]guanine was low and comparable to the permeability towards the extracellular space markers.
View Article and Find Full Text PDFThis study investigated the transfer of T4 from cerebrospinal fluid (CSF) into the choroid plexuses (CP) and ventricular brain regions, and the role of P-glycoprotein (P-gp), multidrug resistance protein 1 (mrp1) and organic anion transporting polypeptides (oatps). During in vivo ventriculo-cisternal (V-C) perfusion in the anesthetized rabbit (meditomidine hydrochloride 0.5 mg kg(-1), pentobarbitone 10 mg kg(-1) i.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2006
The transport of 125I-labeled thyroxine (T4) from the cerebrospinal fluid (CSF) into brain and choroid plexus (CP) was measured in anesthetized rabbit [0.5 mg/kg medetomidine (Domitor) and 10 mg/kg pentobarbitonal sodium (Sagatal) iv] using the ventriculocisternal (V-C) perfusion technique. 125I-labeled T4 contained in artificial CSF was continually perfused into the lateral ventricles for up to 4 h and recovered from the cisterna magna.
View Article and Find Full Text PDFBackground: Efflux transport of adenosine across the choroid plexus (CP) epithelium might contribute to the homeostasis of this neuromodulator in the extracellular fluids of the brain. The aim of this study was to explore adenosine transport across sheep CP epithelial cell monolayers in primary culture.
Methods: To explore transport of adenosine across the CP epithelium, we have developed a method for primary culture of the sheep choroid plexus epithelial cells (CPEC) on plastic permeable supports and analysed [14C] adenosine transport across this cellular layer, [14C] adenosine metabolism inside the cells, and cellular uptake of [14C] adenosine from either of the chambers.
J Gerontol A Biol Sci Med Sci
July 2005
Transthyretin (TTR), synthesized by the choroid plexus (CP) and secreted into cerebrospinal fluid (CSF), is involved in thyroxine (T4) transport and chelation of beta-amyloid peptide, attenuating neurotoxicity. To characterize age-related changes in TTR synthesis, CSF and CPs were collected from young adult (1-2 years) and old (>8 years) sheep anesthetized with thiopentone sodium. TTR in old sheep CSF was low compared to young (n = 4 each); however, CP messenger RNA (mRNA) for TTR did not change.
View Article and Find Full Text PDFAmmonia may be the major cerebral intoxicant responsible for the increased general or passive permeability of the blood-brain barrier (BBB) leading to the cerebral edema associated with acute liver failure. The present study investigated the effects of ammonia, as NH4+, on Na+ (22Na), K+ (86Rb), and 14C-mannitol uptake in the BBB. An in situ isolated perfused rat brain preparation was used to study the action of 1 mM ammonium acetate in Krebs'-Ringer perfusate.
View Article and Find Full Text PDFAdv Drug Deliv Rev
October 2004
The choroid plexuses (CPs) are leaf-like highly vascular structures laying in the ventricles. The main function of choroid plexuses is the production of the cerebrospinal fluid (CSF). Although CPs have a unique distribution of ion transporters/channels, the mechanism of CSF production is similar to the production of fluids in other epithelia and is based on energy released from ATP hydrolysis, which drives unidirectional flux of ions accompanied by movement of water by osmosis.
View Article and Find Full Text PDFJ Toxicol Environ Health A
March 2003
Lead (Pb) exposure hinders brain development in children by mechanisms that remain unknown. Previous evidence shows that sequestration of Pb in the choroid plexus lowers the production and secretion of transthyretin (TTR), a thyroxine (T4) transport protein, from the choroid plexus into the cerebrospinal fluid (CSF). This study was undertaken to characterize the uptake kinetics of T4 by the choroid plexus and to determine if in vivo Pb exposure altered the T4 uptake in an in situ perfused ovine choroid plexus model.
View Article and Find Full Text PDFThe aim of this study was to analyse the uptake of the synthetic nucleoside tiazofurin and glucoso-linker-tiazofurin conjugate (GLTC) into rat C6 glioma cells in vitro. Results indicated that C6 cells accumulated [3H] tiazofurin slowly with time and that accumulation was reduced by the presence of unlabelled GLTC in the medium which implies that GLTC competes with tiazofurin for transport sites. Uptake of [14C] 2 deoxy-glucose into these cells was very rapid and was not affected by the presence of unlabelled GLTC.
View Article and Find Full Text PDFThe efflux of purine nucleobases and their nucleosides from the rat brain was investigated using the brain efflux index (BEI) method. Calculated BEI values showed that purine nucleobases had very rapid initial efflux after the intracerebral injection, which was followed by the slower efflux due to the intracellular trapping of labelled molecules and confirmed by the capillary depletion technique. The efflux of ribonucleosides was much slower than the efflux of nucleobases and the structure of the sugar moiety seemed to be important, since a significant difference in the efflux velocity between ribo- and deoxyribonucleosides was observed.
View Article and Find Full Text PDFThe uptake of principal salvageable nucleobase hypoxanthine was investigated across the basolateral membrane of the sheep choroid plexus (CP) perfused in situ. The results suggest that hypoxanthine uptake was Na+-independent, which means that transport system on the basolateral membrane can mediate the transport in both directions. Although the unlabelled nucleosides adenosine and inosine markedly reduce the transport it seems that this inhibition was due to nucleoside degradation into nucleobases in the cells, since non-metabolised nucleoside analogue NBTI did not inhibit the transport.
View Article and Find Full Text PDF