The xenon plasma focused ion beam and scanning electron microscopy (PFIB-SEM) system is a promising tool for 3D tomography of nano-scale materials, including nanotextured black silicon (BSi), whose topography is difficult to measure with conventional microscopy techniques. Advantages of PFIB-SEM include high material removal rates, precise control of milling parameters and automated slice-and-view procedures. However, there is no universal sample preparation procedure nor is there an established ideal workflow for the PFIB-SEM slice-and-view process.
View Article and Find Full Text PDFThis paper demonstrates an improved method to accurately extract the surface morphology of black silicon (BSi). The method is based on an automated Xe plasma focused ion beam (PFIB) and scanning electron microscope (SEM) tomography technique. A comprehensive new sample preparation method is described and shown to minimize the PFIB artifacts induced by both the top surface sample-PFIB interaction and the non-uniform material density.
View Article and Find Full Text PDFThe emergence of nanotextures in photovoltaics has resulted in challenges associated with optical modelling. Whilst rigorous methods exist to accurately solve these textures, the computational effort required limits the scope of modeling applications. The effective medium approximation (EMA) is a potential alternative to provide rapid modeling results which can be easily integrated with ray tracing of large complex structures.
View Article and Find Full Text PDF