The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice.
View Article and Find Full Text PDFBackground: The sodium iodide symporter (NIS) mediates iodide transport into cells and has been identified in approximately 70% of breast cancers. Functional NIS expression raises the possibility of using (131)I for therapeutic targeting of tumor cells. Treatment of triple-negative breast cancers [estrogen/progesterone receptor-negative and HER2-negative (ER-/PR-/HER2-)] is primarily limited to chemotherapy.
View Article and Find Full Text PDFOptical imaging has made it possible to monitor response to anticancer therapies in tumor xenografts. The concept of treating breast cancers with (131)I is predicated on the expression of the Na(+)/I- symporter (NIS) in many tumors and uptake of I- in some. The pattern of (131)I radioablative effects were investigated in an MCF-7 xenograft model dually transfected with firefly luciferase and NIS genes.
View Article and Find Full Text PDFB7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues.
View Article and Find Full Text PDF