Importance: Department of Veterans Affairs (VA) health care spending has increased in the past decade, in part due to legislative changes that expanded access to VA-purchased care.
Objective: To understand how insurance coverage and enrollment in VA has changed between 2010 and 2021.
Design, Setting, And Participants: This cross-sectional study used data from surveys conducted from 2010 to 2021.
Biomacromolecules
January 2023
Protein-based material design provides great advantages to developing smart biomaterials with tunable structures and desired functions. They have been widely used in many biomedical applications including tissue engineering and drug delivery. However, protein-based materials are not yet widely used in optoelectronic materials despite their excellent optical and tunable mechanical properties.
View Article and Find Full Text PDFAdhesives can potentially be used to achieve fast and efficient wound closure; however, current products show poor bonding on wet surfaces, undergo swelling, and lack adequate biocompatibility. We designed a hydrogel adhesive with recombinant elastin-like polypeptides (ELPs), which are flexible proteins that can be customized for biomedical needs. The adhesive proteins are synthesized by chemically modifying the ELPs with dopamine, which contain adhesive catechol moieties.
View Article and Find Full Text PDFA shape-memory hydrogel is a programmable hydrogel material that can store specific shapes and execute functions in response to stimuli. In this report, we developed shape-memory hydrogels by creating double-network polymeric structures using a physically cross-linking elastin-like polypeptide (ELP) and a chemically cross-linking polyacrylamide (PAM). We synthesized the hydrogel matrix by polymerizing the acrylamide mixed in an ELP solution.
View Article and Find Full Text PDFControlling the shape, geometry, density, and orientation of nanomaterials is critical to fabricate functional devices. However, there is limited control over the morphological and directional characteristics of presynthesized nanomaterials, which makes them unsuitable for developing devices for practical applications. Here, we address this challenge by demonstrating vertically aligned and polarized piezoelectric nanostructures from presynthesized biological piezoelectric nanofibers, M13 phage, with control over the orientation, polarization direction, microstructure morphology, and density using genetic engineering and template-assisted self-assembly process.
View Article and Find Full Text PDFPiezoelectric materials are excellent generators of clean energy, as they can harvest the ubiquitous vibrational and mechanical forces. We developed large-scale unidirectionally polarized, aligned diphenylalanine (FF) nanotubes and fabricated peptide-based piezoelectric energy harvesters. We first used the meniscus-driven self-assembly process to fabricate horizontally aligned FF nanotubes.
View Article and Find Full Text PDFCalcium phosphate cements (CPCs) are synthetic bioactive cements widely used as hard tissue substitutes. Critical limitations of use include their poor mechanical properties and poor anti-washout behaviour. To address those limitations, we combined CPC with genetically engineered elastin-like polypeptides (ELPs).
View Article and Find Full Text PDFThe mammalian olfactory system provides great inspiration for the design of intelligent sensors. To this end, we have developed a bioinspired phage nanostructure-based color sensor array and a smartphone-based sensing network system. Using a M13 bacteriophage (phage) as a basic building block, we created structural color matrices that are composed of liquid-crystalline bundled nanofibers from self-assembled phages.
View Article and Find Full Text PDFTailorable hydrogels that are mechanically robust, injectable, and self-healable, are useful for many biomedical applications including tissue repair and drug delivery. Here we use biological and chemical engineering approaches to develop a novel in situ forming organic/inorganic composite hydrogel with dynamic aldimine cross-links using elastin-like polypeptides (ELP) and bioglass (BG). The resulting ELP/BG biocomposites exhibit tunable gelling behavior and mechanical characteristics in a composition and concentration dependent manner.
View Article and Find Full Text PDFWe developed rubber-like elastomeric materials using a natural elastin derived sequence and genetic engineering to create precisely defined elastin-like polypeptides. The coiled elastin-like polypeptide chains, which behave like entropic springs, were cross-linked using an end-to-end tethering scheme to synthesize simple hydrogels with excellent extensibility and reversibility. Our hydrogels extend to strains as high as 1500% and remain highly resilient with elastic recovery as high as 94% even at 600% strain, significantly exceeding any other protein-based hydrogel.
View Article and Find Full Text PDFDetection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
August 2015
In this review article, we describe recent progress in the field of protein-based bionanomaterial design with focus on the four well-characterized proteins: mammalian elastin and collagen, and insect-derived silk and resilin. These proteins are important structural components and understanding their physical and biochemical properties has allowed us to not only replicate them but also create novel smart materials. The 'smart' properties of a material include its ability to self-assemble, respond to stimuli, and/or promote cell interactions.
View Article and Find Full Text PDFGraphene-based materials commonly require functionalization for biological applications in order to control their physical/colloidal properties and to introduce additional capabilities, such as stimuli-responsiveness and affinity to specific biomolecules. Here, we functionalized CVD-grown graphene and graphene oxide with a genetically engineered elastin-like polypeptide fused to a graphene binding peptide and then showed that the resulting hybrid materials exhibit thermo- and photoresponsive behaviors. Furthermore, we demonstrate that our genetic engineering strategy allows for the facile introduction of bioactivity to reduced graphene oxide.
View Article and Find Full Text PDFHydrogels actuators (HAs) that can reversibly respond to stimuli have applications in diverse fields. However, faster response rates and improved control over actuation timing and location are required to fulfill their potential. To address these criteria, we synthesized near-infrared light-driven HAs by interfacing genetically engineered elastin-like polypeptides with reduced-graphene oxide sheets.
View Article and Find Full Text PDF