Publications by authors named "Malaska M"

In a slim-floor structural system, beams and slabs are placed at the same level, reducing the overall floor height and material usage in vertical structures, thereby improving economic efficiency. The use of slim-floor structures is common practice in Finnish construction where these structures are typically constructed using hollow-concrete slabs and welded steel box beams. However, in Finland, only a few buildings utilise cross-laminated timber (CLT) slabs in slim-floor structures, and none have incorporated the composite action between CLT and steel beams.

View Article and Find Full Text PDF

Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations.

View Article and Find Full Text PDF

High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems.

View Article and Find Full Text PDF

Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses.

View Article and Find Full Text PDF

Titan, Saturn's largest moon, has a plethora of organic compounds in the atmosphere and on the surface that interact with each other. Cryominerals such as co-crystals may influence the geologic processes and chemical composition of Titan's surface, which in turn informs our understanding of how Titan may have evolved, how the surface is continuing to change, and the extent of Titan's habitability. Previous works have shown that a pyridine:acetylene (1:1) co-crystal forms under specific temperatures and experimental conditions; however, this has not yet been demonstrated under Titan-relevant conditions.

View Article and Find Full Text PDF
Article Synopsis
  • * An interdisciplinary group of experts developed a strategic framework for exploring these planetary caves, focusing on areas like astrobiology, geology, and robotics, aiming to guide research for the next decade.
  • * They identified 53 priority research questions from an initial list of 198, emphasizing that with sufficient funding and support, advancements in technology could lead to robotic missions investigating lunar and Martian caves for evidence of extraterrestrial life and future human habitation.
View Article and Find Full Text PDF

Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn's largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan's dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ.

View Article and Find Full Text PDF

The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons.

View Article and Find Full Text PDF

Titan is a sedimentary world, with lakes, rivers, canyons, fans, dissected plateaux, and sand dunes. Sediments on Saturn's moon are thought to largely consist of mechanically weak organic grains, prone to rapid abrasion into dust. Yet, Titan's equatorial dunes have likely been active for 10s-100s kyr.

View Article and Find Full Text PDF

Purpose: To explore the psychological factors that impacted RNs during the COVID-19 pandemic.

Methods: Survey response data were collected from 151 respondents across 25 states and various healthcare system settings.

Results: RNs in clinical settings had slightly more emotional stress than those in academia.

View Article and Find Full Text PDF

revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice.

View Article and Find Full Text PDF

The purpose of this study was to determine the effectiveness of physical activity intensity prescription using real-time cadence on achieving the required intensities for health benefits. Forty adults (18-65 years) participated in the study. The intensity prescriptions included Rating of Perceived Exertion, Talk Test, Heart Rate, and Real-Time Cadence.

View Article and Find Full Text PDF

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists.

View Article and Find Full Text PDF

The Enceladus plume is a target of astrobiological interest in planetary science since it may carry signs of extraterrestrial life entrapped in ice grains formed from the subsurface ocean of this moon of Saturn. Fly-by mission concepts have been proposed to perform close investigations of the plume, including detailed in situ measurements of chemical composition with a new generation of mass spectrometer instrumentation. Such a scenario involves high-velocity collisions (typically around 5 km/s or higher) of the instrument with the encountered ice grains.

View Article and Find Full Text PDF

The atomic-scale fragmentation processes involved in molecules undergoing hypervelocity impacts (HVIs; defined as 3 km/s) are challenging to investigate via experiments and still not well understood. This is particularly relevant for the consistency of biosignals from small-molecular-weight neutral organic molecules obtained during solar system robotic missions sampling atmospheres and plumes at hypervelocities. Experimental measurements to replicate HVI effects on neutral molecules are challenging, both in terms of accelerating uncharged species and isolating the multiple transition states over very rapid timescales (1 ps).

View Article and Find Full Text PDF

We used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter "hotspots" embedded in the ice.

View Article and Find Full Text PDF

The inelastic scattering dynamics of the isobaric molecules, naphthalene (CH) and 2-octanone (CHO), on highly oriented pyrolytic graphite (HOPG) have been investigated as part of a broader effort to inform the inlet design of a mass spectrometer for the analysis of atmospheric gases during a flyby mission through the atmosphere of a planet or moon. Molecular beam-surface scattering experiments were conducted, and the scattered products were detected with the use of a rotatable mass spectrometer detector. Continuous, supersonic beams were prepared, with average incident translational energies, ⟨E⟩, of 247.

View Article and Find Full Text PDF

Titan has an active methane-based hydrologic cycle that has shaped a complex geologic landscape, making its surface one of most geologically diverse in the solar system. Despite the different materials, temperatures, and gravity fields between Earth and Titan, many surface features are similar between the two worlds and can be interpreted as products of the same geologic processes. However, Titan's thick and hazy atmosphere has hindered the identification of geologic features at visible wavelengths and the study of surface composition.

View Article and Find Full Text PDF

The purpose of this study is to establish evidence of validity for wearable activity monitors providing real-time cadence against a criterion measure. Thirty-six healthy adults, aged 18-65 years, participated in the study. Four activity monitors including 2 watch-based monitors and 2 cadence sensors attaching to shoelaces were tested.

View Article and Find Full Text PDF

Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice.

View Article and Find Full Text PDF

Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry.

View Article and Find Full Text PDF

We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface.

View Article and Find Full Text PDF