Publications by authors named "Malamatenia Lamprinou"

Apart from serving as a Th1 lineage commitment regulator, transcription factor T-bet is also expressed in other immune cell types and thus orchestrates their functions. In case of B cells, more specifically, T-bet is responsible for their isotype switching to specific IgG sub-classes (IgG2a/c in mice and IgG1/3 in humans). In various autoimmune disorders, such as systemic lupus erythematosus and/or rheumatoid arthritis, subsets of T-bet expressing B cells, known as age-associated B cells (CD19+CD11c+CD21-T-bet+) and/or double-negative B cells (CD19+IgD-CD27-T-bet+), display an expansion and seem to drive disease pathogenesis.

View Article and Find Full Text PDF

Background: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics.

View Article and Find Full Text PDF

Background: Primary dysmenorrhea is considered to be one of the most common gynecological complaints, affecting women's daily activities and social life. The severity of dysmenorrhea varies among women, and its management is of high importance for them. Given that non-steroidal anti-inflammatory drugs (NSAIDs), the established treatment for dysmenorrhea, are associated with many adverse events, alternative therapeutic options are under evaluation.

View Article and Find Full Text PDF

Background And Objectives: Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction.

View Article and Find Full Text PDF

Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option.

View Article and Find Full Text PDF

COVID-19 is an infectious disease caused by a single-stranded RNA (ssRNA) virus, known as SARS-CoV-2. The disease, since its first outbreak in Wuhan, China, in December 2019, has led to a global pandemic. The pharmaceutical industry has developed several vaccines, of different vector technologies, against the virus.

View Article and Find Full Text PDF