Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans.
View Article and Find Full Text PDFInvasive group A streptococcus (GAS) infections include necrotizing soft tissue infections (NSTI) and streptococcal toxic shock syndrome (STSS). We have previously shown that host HLA class II allelic variations determine the risk for necrotizing fasciitis (NF), a dominant subgroup of NSTI, and STSS by modulating responses to GAS superantigens (SAgs). SAgs are pivotal mediators of uncontrolled T-cell activation, triggering a proinflammatory cytokine storm in the host.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus (MRSA) is a major cause of skin and soft tissue infections. One of the highly successful and rapidly disseminating clones is MRSA ST22 commonly associated with skin tropism. Here we show that a naturally occurring single amino acid substitution (tyrosine to cysteine) at position 223 of AgrC determines starkly different ST22 S.
View Article and Find Full Text PDFHost genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, including sepsis and necrotizing soft tissue infections (NSTIs). Our initial studies with conventional mouse strains revealed that host genetic variations and sex differences play an important role in orchestrating the severity, susceptibility and outcomes of NSTIs. To understand the complex genetic architecture of NSTIs, we utilized an unbiased, forward systems genetics approach in an advanced recombinant inbred (ARI) panel of mouse strains (BXD).
View Article and Find Full Text PDFBackground: Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same STEC strain.
View Article and Find Full Text PDFHost genetic variations play an important role in several pathogenic diseases, and we previously provided strong evidence that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive group A Streptococcus (GAS) patients, including sepsis and necrotizing soft tissue infections (NSTIs). The goal of the present study was to investigate how genetic variations and sex differences among four commonly used mouse strains contribute to variation in severity, manifestations, and outcomes of NSTIs. DBA/2J mice were more susceptible to NSTIs than C57BL/6J, BALB/c, and CD-1 mice, as exhibited by significantly greater bacteremia, excessive dissemination to the spleen, and significantly higher mortality.
View Article and Find Full Text PDFEstablishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules.
View Article and Find Full Text PDFStreptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype.
View Article and Find Full Text PDFBoth viral and host genetics affect the outcome of herpes simplex virus type 1 (HSV-1) infection in humans and experimental models. Little is known about specific host gene variants and molecular networks that influence herpetic disease progression, severity, and episodic reactivation. To identify such host gene variants we have initiated a forward genetic analysis using the expanded family of BXD strains, all derived from crosses between C57BL/6J and DBA/2J strains of mice.
View Article and Find Full Text PDFNanotechnology involves the creation and manipulation of materials at nanoscale levels (1-100 nm) to create products that exhibit novel properties. While this motivation has driven nanoscience and technology in physics and engineering, it is not the main reason that nanoparticles are useful for systemic applications in the human body. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities.
View Article and Find Full Text PDFNoninvasive vaginal infections by Staphylococcus aureus strains producing the superantigen TSST-1 can cause menstrual toxic shock syndrome (mTSS). With the objective of exploring the basis for differential susceptibility to mTSS, the relative responsiveness to TSST-1 of healthy women has been investigated. Peripheral blood mononuclear cells from healthy donors were incubated with purified TSST-1 or with the T-cell mitogen phytohemmaglutinin (PHA), and proliferation was measured.
View Article and Find Full Text PDFDue to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection.
View Article and Find Full Text PDFIn Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance.
View Article and Find Full Text PDFRheumatic fever is one of the most-neglected ailments, and its pathogenesis remains poorly understood. The major thrust of research has been directed towards cross-reactivity between streptococcal M protein and myocardial α-helical coiled-coil proteins. M protein has also been the focus of vaccine development.
View Article and Find Full Text PDFThe past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence.
View Article and Find Full Text PDFStaphylococcus aureus produces superantigens (SAgs) that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the β-chains of T cell receptors (Vβ-TCRs), and each SAg binds a unique subset of Vβ-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS).
View Article and Find Full Text PDFJ Neuroinflammation
April 2012
Background: Recent clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism. Propionic acid (PA) is a short chain fatty acid and an important intermediate of cellular metabolism. Although PA has several beneficial biological effects, its accumulation is neurotoxic.
View Article and Find Full Text PDFStreptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown.
View Article and Find Full Text PDFBehav Brain Funct
January 2012
Objectives: We examined whether plasma concentrations of amyloid beta (Aβ) as protein derivatives play a central role in the etiology of autistic features.
Design And Methods: Concentrations of human Aβ (1-42), Aβ (1-40), and Aβ (40/42) in the plasma of 52 autistic children (aged 3-16 years) and 36 age-matched control subjects were determined by using the ELISA technique and were compared.
Results: Compared to control subjects, autistic children exhibited significantly lower concentrations of both Aβ (1-40) and Aβ (1-42) and lower Aβ (40/42) concentration ratio.
Streptococcal toxic shock syndrome (STSS) is characterized by diffuse vascular leak resulting from widespread endothelial activation. Angiopoietin-1 and -2 (Ang-1 and Ang-2), which are important regulators of endothelial quiescence and activation, respectively, are dysregulated in certain diseases that are associated with endothelial dysfunction, but they have not been previously investigated in STSS. Plasma Ang-1 and Ang-2 concentrations were measured in 37 patients with invasive streptococcal infection with and without concurrent STSS.
View Article and Find Full Text PDFHost immunogenetic variations strongly influence the severity of group A streptococcus sepsis by modulating responses to streptococcal superantigens (Strep-SAgs). Although HLA-II-DR15/DQ6 alleles strongly protect against severe sepsis, HLA-II-DR14/DR7/DQ5 alleles significantly increase the risk for toxic shock syndrome. We found that, regardless of individual variations in TCR-Vβ repertoires, the presentation of Strep-SAgs by the protective HLA-II-DR15/DQ6 alleles significantly attenuated proliferative responses to Strep-SAgs, whereas their presentation by the high-risk alleles augmented it.
View Article and Find Full Text PDFGroup A Streptococcus (GAS) causes rare but life-threatening syndromes of necrotizing fasciitis and toxic shock-like syndrome in humans. The GAS serotype M1T1 clone has globally disseminated, and mutations in the control of virulence regulatory sensor kinase (covRS) operon correlate with severe invasive disease. Here, a cohort of non-M1 GAS was screened to determine whether mutation in covRS triggers systemic dissemination in divergent M serotypes.
View Article and Find Full Text PDFStreptococcus pyogenes is an important human pathogen that causes a variety of diseases including life-threatening invasive diseases, such as toxic shock and deep tissue infections. Although S. pyogenes are classically considered extracellular pathogens, a clinical significance of an intracellular source has been emphasized.
View Article and Find Full Text PDF