Exerc Sport Sci Rev
January 2009
Because bone is responsive to mechanical loading, pulsating joint loading (PJL), which laterally applies oscillatory mechanical loads to joints, can be explored for preventive conditioning and therapeutic treatments. Herein, the general features of PJL are reviewed, and its potential usage for sports medicine is discussed.
View Article and Find Full Text PDFBr J Sports Med
July 2008
Amphibian embryos are an excellent model system for analyzing the mechanisms of vertebrate cardiogenesis. Studies of heart development in Xenopus have, for example, revealed that the inductive interaction of the heart primordia with the adjacent underlying endoderm and dorsal lip starts at the early stages of gastrulation. However, the molecular basis of those early inductive events and the genes expressed during the early phases of heart differentiation remain largely unknown.
View Article and Find Full Text PDFMost space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise. A comprehensive future program in "life sciences in space" needs, therefore, well-defined research goals and strategies as well as a sound ground-based program. The first half of this review will describe four key aspects such as the environment in space, previous accomplishments in space (primarily focusing on amphibian embryogenesis), available resources, and recent advances in bioinformatics and biotechnology, whose clear understanding is imperative for defining future directions.
View Article and Find Full Text PDFInt J Dev Biol
November 2003
In this junior-level undergraduate course, developmental life cycles exhibited by various organisms are reviewed, with special attention--where relevant--to the human embryo. Morphological features and processes are described and recent insights into the molecular biology of gene expression are discussed. Ways are studied in which model systems, including marine invertebrates, amphibia, fruit flies and other laboratory species are employed to elucidate general principles which apply to fertilization, cleavage, gastrulation and organogenesis.
View Article and Find Full Text PDFWe describe a new biochemical technique, "promoter competition assay," for examining the role of cis-acting DNA elements in tissue cultures. Recent advances in tissue engineering permit the culture of a variety of cells. Many tissues are engineered, however, without an appropriate understanding of molecular machinery that regulates gene expression and cellular growth.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
June 2000
Various historical eras in the distant as well as the recent past of amphibian embryology are briefly reviewed. The concepts which emerged from the early years matured, then were laid to rest for several decades. A resurgence, driven by key discoveries with peptide growth factors, and fueled by modern molecular biology methods, is underway.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
June 2000
In the process of amphibian development, an embryonic body plan is established through cell division, sequential gene expression, morphogenesis and cell differentiation. The mechanism of body patterning is complex and includes multiple induction events. Activin, a TGF-beta family protein, can induce several kinds of mesodermal and endodermal tissues in animal cap explants in a dose-dependent manner.
View Article and Find Full Text PDFThe amphibian body plan is established as the result of a series of inductive interactions. During early cleavage stages cells in the vegetal hemisphere induce overlying animal hemisphere cells to form mesoderm. The interaction represents the first major body-patterning event and is mediated by peptide growth factors.
View Article and Find Full Text PDFRecent discoveries of the role peptide growth factors (PGFs) play in regulating embryonic patterning and differentiation have profoundly influenced research on the molecular biology of early amphibian embryogenesis. Several PGFs have been recognized to be present as endogenous components of amphibian eggs and early embryos, while other PGFs -- which are known from heterologous systems (e.g.
View Article and Find Full Text PDFAs a first step towards providing a conceptual approach to understanding similarities and differences in the mechanisms which guide inductive interactions among related organisms (e.g. various amphibia), a set of five principles is offered here.
View Article and Find Full Text PDFThe tissue interactions which comprise the inductive phenomena associated with urodele heart morphogenesis are relatively well understood. In order to take full advantage of the experimental potential of this system formulation of an in vitro tissue culture system would be very helpful. Herein are described conditions for culturing Cynops pyrrhogaster early gastrula ectoderm tissue in the presence of the peptide growth factor activin.
View Article and Find Full Text PDFBiochim Biophys Acta
January 1995
Molecular chaperones assist in the folding of proteins, but their role during development is not well understood. Here we report the temporal and spatial expression pattern of the axolotl homologue of mouse chaperonin TCP-1 during normal amphibian embryogenesis and in several models of abnormal embryogenesis. A partial axolotl TCP-1 cDNA (646 bp; 519 coding bp) isolated by 3' RACE PCR shows considerable homology to mouse TCP-1.
View Article and Find Full Text PDFIn vitro and in vivo overexpression studies have demonstrated that the c-ski proto-oncogene can influence proliferation, morphological transformation and myogenic differentiation. We report the isolation and expression of an axolotl (Ambystoma mexicanum) c-ski (aski) gene. Sequence analysis revealed a high degree of nucleotide and predicted amino acid (AA) homology with mammalian and anuran c-ski, showing the highest conservation to Xenopus laevis c-ski (74% nucleotide and 87% AA).
View Article and Find Full Text PDFThe myogenic regulatory factors (MRFs) MyoD and Myf5 are the earliest described muscle-specific genes to be expressed in Xenopus development. To study the in vivo effects of overexpressing Xenopus MyoD and Myf5, synthetic RNAs were microinjected into single blastomeres of 2- to 32-cell stage Xenopus embryos. In vivo overexpression of these MRFs initiates the precocious and ectopic expression of actin and myosin.
View Article and Find Full Text PDFAnalysis of the developmental potential of animal quartets (the set of four animal blastomeres isolated from the 8-cell stage Xenopus embryo) provided insight into the manner in which morphogenetic information is distributed along the animal-vegetal axis. Gravity treatments were employed to alter the partitioning plane. Animal quartets isolated from embryos exposed to simulated weightlessness had larger animal blastomeres, and they formed structures such as a groove and a protrusion more often than 1g-control animal quartets.
View Article and Find Full Text PDFEarly amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) "morphological patterning" such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) "the timing of embryonic events" such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.
View Article and Find Full Text PDFAnuran amphibian embryos (Xenopus laevis and Rana dybowskii) are sensitive to novel gravitational fields. Under simulated weightlessness, (i) the location of the first horizontal cleavage furrow was shifted toward the vegetal pole at the eight-cell stage; (ii) the position of the blastocoel was more centered, and the number of cell layers in the blastocoel roof was increased at the blastula stage; (iii) the dorsal lip appeared closer to the vegetal pole at the gastrula stage; and (iv) head and eye dimensions were enlarged at the hatching tadpole stage. Effects of simulated hypergravity were opposite to those of simulated weightlessness, except that hypergravity, unlike simulated weightlessness, reduced the number of primordial germ cells in feeding tadpoles.
View Article and Find Full Text PDFThe animal/vegetal cleavage ratio (AVCR), defined as the ratio of the height of the animal blastomere to the height of the Xenopus embryo at the 8 cell stage, can be shifted by placing embryos in novel gravitational fields: clinostating (microgravity simulation) increases AVCR, and centrifugation (hypergravity simulation) reduces AVCR. This report contributes to an understanding of the subcellular mechanism responsible for the furrow relocation and assesses its significance. Embryo inversion and D2O immersion were found to increase AVCR, and cold shock was found to reduce AVCR.
View Article and Find Full Text PDFA combination of hypergravity (centrifugation) and hypogravity (clinostat) studies have been carried out on amphibian (frog, Xenopus) eggs. The results reveal that the twinning caused by centrifugation exhibits substantial spawning to spawning variation. That variation can be attributed to the apparent viscosity of the egg's internal cytoplasm.
View Article and Find Full Text PDFXenopus embryos have been reported to vary widely in their developmental response to centrifugation. Variation in response to centrifugation, as measured by embryo survival and twinning of axial structures, was monitored different spawnings of Xenopus laevis eggs. A convenient method for quantifying the egg cytoplasm's potential for displacement in a centrifugal field was employed.
View Article and Find Full Text PDF