Despite the interest in different temperature acclimatisations of higher plants, few studies have considered the mechanisms that allow psychrotolerant microalgae to live in a cold environment. Although the analysis of the genomes of some algae revealed the presence of specific genes that encode enzymes that can be involved in the response to stress, this area has not been explored deeply. This work aims to clarify the acclimatisation mechanisms that enable the psychrotolerant green alga Coccomyxa subellipsoidea C-169 to grow in a broad temperature spectrum.
View Article and Find Full Text PDFThe aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of low (LL) and high (HL) intensity. Biochemical characterization, fluorescence emission, and oxygen exchange were used to investigate selected cellular physiological parameters.
View Article and Find Full Text PDFMost C4 plants that naturally occur in tropical or subtropical climates, in high light environments, had to evolve a series of adaptations of photosynthesis that allowed them to grow under these conditions. In this review, we summarize mechanisms that ensure the balancing of energy distribution, counteract photoinhibition, and allow the dissipation of excess light energy. They secure effective electron transport in light reactions of photosynthesis, which will lead to the production of NADPH and ATP.
View Article and Find Full Text PDFIn this study, we have shown that transformation efficiency of C-169 obtained by electroporation can be significantly increased by either supra- or sub-optimal growth temperatures.
View Article and Find Full Text PDFIn this study, we have shown the applicability of electroporation and hygromycin B as a convenient selectable marker for stable nuclear transformation of Coccomyxa subellipsoidea C-169. Since it is the first sequenced eukaryotic microorganism from polar environment, this offers unique opportunities to study adaptation mechanisms to cold.
View Article and Find Full Text PDFThe ability to achieve nuclear or chloroplast transformation in plants has been a long standing goal, especially in microalgae research. Over past years there has been only little success, but transient and stable nuclear transformation has been achieved in multiple species. Our newly developed method allows for relatively simple transformation of in both nuclear and chloroplast genome by means of homologous recombination between the genome and a transformation vector.
View Article and Find Full Text PDFWe have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ' subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ' subunit in the PSII complex.
View Article and Find Full Text PDFThree species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS).
View Article and Find Full Text PDFWe have successfully transformed an exthemophilic red alga with the chloramphenicol acetyltransferase gene, rendering this organism insensitive to its toxicity. Our work paves the way to further work with this new modelorganism. Here we report the first successful attempt to achieve a stable, under selectable pressure, chloroplast transformation in Cyanidioschizon merolae-an extremophilic red alga of increasing importance as a new model organism.
View Article and Find Full Text PDFIn this study, we have shown the applicability of chloramphenicol acetyltransferase as a new and convenient selectable marker for stable nuclear transformation as well as potential chloroplast transformation of Cyanidioschyzon merolae-a new model organism, which offers unique opportunities for studding the mitochondrial and plastid physiology as well as various evolutionary, structural, and functional features of the photosynthetic apparatus.
View Article and Find Full Text PDFLight quality has various effects on photochemistry and protein phosphorylation in Zea mays and Arabidopsis thaliana thylakoids due to different degrees of light penetration across leaves and redox status in chloroplasts. The effect of the spectral quality of light (red, R and far red, FR) on the function of thylakoid proteins in Zea mays and Arabidopsis thaliana was investigated. It was concluded that red light stimulates PSII activity in A.
View Article and Find Full Text PDFArch Environ Contam Toxicol
November 2014
Metabolic responses to Pb(NO₃)₂ (Pb) ions of excised leaves of metallicolous (MPs) and nonmetallicolous populations (NMPs) of Armeria maritima, cultivated on normal soil, were examined. Detached leaves were exposure to Pb for 24 h, and metabolic parameters were investigated. Pb decreased the photosynthesis (Pn) rate and photosystem II (PSII) activity, whereas the photochemical efficiency of PSII remained unchanged.
View Article and Find Full Text PDFRecent studies have revealed that photo damages inducing high white light illumination of C3-type plant Arabidopsis thaliana promotes Deg1-mediated degradation of not only photosystem II core proteins D1/D2 but also minor LHCII proteins CP26, CP29 and PSII-associated PsbS protein. Using biochemical and immunological approaches we show that that the substrate pool of the heterologously expressed Deg1 ortholog protease from C4-type plant Zea mays is very similar to that of the A. thaliana in both mesophyll and bundle sheath chloroplasts.
View Article and Find Full Text PDFThe IncF plasmid p1658/97 (c. 125 kb) from Escherichia coli isolates recovered during a clonal outbreak in a hospital in Warsaw, Poland, in 1997 contains the extended-spectrum β-lactamase (ESBL) gene bla(SHV-5), originated from the Klebsiella pneumoniae chromosome. A region containing the bla(SHV-5) gene is flanked by two IS26 copies and its copy number multiplies spontaneously within p1658/97 and RecA-deficient E.
View Article and Find Full Text PDFLead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream.
View Article and Find Full Text PDFThe chloroplast Deg1 protein performs proteolytic cleavage of the photodamaged D1 protein of the photosystem II (PSII) reaction center, PSII extrinsic subunit PsbO and the soluble electron carrier plastocyanin. Using biochemical, immunological and mass spectrometry approaches we showed that the heterogeneously expressed Deg1 protease from Arabidopsis thaliana can be responsible for the degradation of the monomeric light-harvesting complex antenna subunits of PSII (LHCII), CP26 and CP29, as well as PSII-associated PsbS (CP22/NPQ4) protein. The results may indicate that cytochrome b (6) protein and two previously unknown thylakoid proteins, Ptac16 and an 18.
View Article and Find Full Text PDFPhotoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin.
View Article and Find Full Text PDFThe effect of light irradiance on the amount of ATP synthase alpha-subunit in mesophyll (M) and bundle sheath (BS) chloroplasts of C(4) species such as maize (Zea mays L., type NADP-ME), millet (Panicum miliaceum, type NAD-ME) and guinea grass (Panicum maximum, type PEP-CK) was investigated in plants grown under high, moderate and low light intensities equal to 800, 350 and 50 micromol photons m(-2) s(-1), respectively. The results demonstrate that alpha-subunit of ATP synthase in both M and BS chloroplasts is altered by light intensity, but differently in the investigated species.
View Article and Find Full Text PDF