Publications by authors named "Maksym Opanasenko"

Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures.

View Article and Find Full Text PDF

Zeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities.

View Article and Find Full Text PDF

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes.

View Article and Find Full Text PDF

Invited for the cover of this issue are Maksym Opanasenko and co-workers at Charles University in Prague, IKTS and deepXscan GmbH in Dresden. The image depicts a controllable crystallization mechanism that can be switched from classical to reversed crystal growth by manipulating the interplay between silica particles and the structure-directing agent. Read the full text of the article at 10.

View Article and Find Full Text PDF

Crystal growth mechanisms govern a wide range of properties of crystalline materials. Reversed crystal growth is one of the nonclassical mechanisms observed in many materials. However, the reversed crystallization starting from amorphous aggregates and the key factors driving this growth remain elusive.

View Article and Find Full Text PDF

A set of supported CoO catalysts have been designed and prepared to study the effect of textural characteristics and Brønsted acid sites concentration of MWW zeolite support, as well as cobalt loading on catalyst activity. Detailed characterization of the catalysts with a thorough study on their performance in the total oxidation of toluene and propane revealed that MCM-22 is the optimal support and that increasing Si/Al and decreasing external surface of MCM-22 positively affect the activity of supported CoO catalysts, which is determined by their low-temperature reducibility. The activity of the Co/MCM-22 catalysts increased with cobalt content (5-20 wt %), consistent with enhancing the amount of low-temperature reducible CoO.

View Article and Find Full Text PDF

Zeolites are among the most environmentally friendly materials produced industrially at the Megaton scale. They find numerous commercial applications, particularly in catalysis, adsorption, and separation. Under ambient conditions aluminosilicate zeolites are stable when exposed to water or water vapor.

View Article and Find Full Text PDF

Zeolites are one of the most important heterogeneous catalysts, with a high number of large-scale industrial applications. While the synthesis of new zeolites remain rather limited, introduction of germanium has substantially increased our ability to not only direct the synthesis of zeolites but also to convert them into new materials post-synthetically. The smaller Ge-O-Ge angles (vs.

View Article and Find Full Text PDF

Owing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH).

View Article and Find Full Text PDF

This review addresses the recent developments and trends in tailoring the nature and local properties of active sites in zeolite-based catalysts, with a special focus on novel extra-large pore, layered (2D), nanocrystalline, and hierarchical (mesoporous) zeolites with enhanced pore accessibility. In the first part of the review, we discuss the latest achievements in the bottom-up (direct synthesis) and top-down (post-synthesis) approaches for isomorphous substitution in zeolites enabling control over the type (Brønsted, Lewis, or both), amount, strength, and location of acid sites. The benefits in catalysis provided by such zeolites with tuned acidity and improved accessibility are shown for different acid-catalyzed reactions involving bulky molecules, as in the synthesis of fine chemicals and biomass transformations.

View Article and Find Full Text PDF

Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine-based graphdiyne (TzG) framework are synthesized by a simple, one-pot homocoupling polymerization reaction using as catalysts Cu for TzG and Pd /Cu for TzG . The polymers form through irreversible coupling reactions and give rise to a crystalline (TzG ) and an amorphous (TzG ) polymorph.

View Article and Find Full Text PDF

2D oxide nanomaterials constitute a broad range of materials, with a wide array of current and potential applications, particularly in the fields of energy storage and catalysis for sustainable energy production. Despite the many similarities in structure, composition, and synthetic methods and uses, the current literature on layered oxides is diverse and disconnected. A number of reviews can be found in the literature, but they are mostly focused on one of the particular subclasses of 2D oxides.

View Article and Find Full Text PDF

Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor-acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation.

View Article and Find Full Text PDF

A novel microporous metal-organic framework, {[Pb(μ-MTB)(HO)]·5DMF·HO} (1; MTB = methanetetrabenzoate and DMF = N,N'-dimethylformamide), was successfully synthesized by a solvothermal reaction and structurally characterized by single-crystal X-ray diffraction. The framework exhibits a unique tetranuclear [Pb(μ-COO)(μ-COO)(COO)(HO)] secondary building unit (SBU). The combination of the SBU with the tetrahedral symmetry of MTB results in a three-dimensional network structure, with one-dimensional jarlike cavities having sizes of about 14.

View Article and Find Full Text PDF

IPC-12 zeolite is the first member of the ADOR family produced by the structural transformation of UOV. The details of the UOV rearrangement were studied to determine the influence of the properties of the parent zeolite and treatment conditions on the outcome of IPC-12 formation. It was established that incomplete disassembly of UOV can be caused by insufficient lability of interlayer connectivity in the parent material possessing Si-enriched D4Rs or by inhibition of hydrolysis by diluted acid at high temperature.

View Article and Find Full Text PDF

Design and synthesis of ordered, metal-free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed-dimensional (2D/3D) metal-free van der Waals (vdW) heterostructures based on triazine (C N ) linkers grow as large area, transparent yellow-orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E = 1.

View Article and Find Full Text PDF

Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur- and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C N ) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.

View Article and Find Full Text PDF

The assembly-disassembly-organization-reassembly (ADOR) process has been used to disassemble a parent zeolite with the UOV structure type and then reassemble the resulting layers into a novel structure, IPC-12. The structure of the material has previously been predicted computationally and confirmed in our experiments using X-ray diffraction and atomic resolution STEM-HAADF electron microscopy. This is the first successful application of the ADOR process to a material with porous layers.

View Article and Find Full Text PDF

The catalytic behavior of isomorphously substituted MIL-100(M) (M=Al, Cr, Fe, In, Sc, V) is investigated for the synthesis of nopol through the Prins condensation of β-pinene with paraformaldehyde. The large mesoporous cages of the metal-organic frameworks provide a sustainable confinement for the formation of the target product (100 % selectivity for nopol over all materials studied). MIL-100(Sc) and MIL-100(V) exhibit the highest yields (up to 90 %) of nopol after just 20 min from the beginning of the reaction, owing to their high concentrations of accessible Lewis sites possessing intermediate acidity.

View Article and Find Full Text PDF

Germanosilicate zeolites often suffer from low hydrothermal stability due to the high content of Ge. Herein, we investigated the post-synthesis introduction of Al accompanied by stabilization of selected germanosilicates by degermanation/alumination treatments. The influence of chemical composition and topology of parent germanosilicate zeolites (ITH, IWW, and UTL) on the post-synthesis incorporation of Al was studied.

View Article and Find Full Text PDF

The impact of the metal nature and framework type on the textural, acidic, and catalytic properties of M-MOF-74 (M=Co, Cu, Mg, Ni) and M-MIL-100 (M=Al, Cr, Sc, V) materials was evaluated. Both metal-organic framework (MOF) families showed 100 % selectivity to the tetrahydropyranyl ether for all alcohols (methanol, 1-propanol, 1-octanol, 2-adamantanol, 1-octadecanol) applied. Independently of the metal employed in the synthesis of M-MOF-74, the conversions were lower than those obtained with M-MIL-100.

View Article and Find Full Text PDF

Porous organic-inorganic materials with tunable textural characteristics were synthesized using the top-down process by intercalating silsesquioxanes and polyhedral oligomeric siloxanes of different types between crystalline zeolite-derived layers. The influence of key parameters such as (i) linker nature (pure hydrocarbon, S-, N-containing); (ii) chain length in alkyl- and aryl bis(trialkoxysilyl) derivatives; (iii) denticity of the organic precursor molecules; (iv) nature and size of side chain in mono(trialkoxysilyl) substrates; (v) rigidity of the chain (saturated unsaturated, aliphatic aromatic); (vi) nature and size of leaving group on the structural and textural properties of formed hybrids was carefully addressed. It was established, that the optimal silsesquioxane appropriate for the formation of zeolite-derived hybrids with high textural characteristics should possess short alkyl or long aryl chains, relatively small leaving groups and denticity larger than 3.

View Article and Find Full Text PDF

A novel methodology, called ADOR (assembly-disassembly-organisation-reassembly), for the synthesis of zeolites is reviewed here in detail. The ADOR mechanism stems from the fact that certain chemical weakness against a stimulus may be present in a zeolite framework, which can then be utilized for the preparation of new solids through successive manipulation of the material. In this review, we discuss the critical factors of germanosilicate zeolites required for application of the ADOR protocol and describe the mechanism of hydrolysis, organisation and condensation to form new zeolites starting from zeolite UTL.

View Article and Find Full Text PDF

Novel layered organic-inorganic materials functionalized with amino groups have been synthesized by using a two-dimensional zeolitic precursor, IPC-1P, prepared by a top-down approach from zeolite UTL. The formation of porous materials containing silsesquioxane linkers covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N  sorption, XRD, TEM). The textural properties and catalytic behavior of functionalized hybrid materials synthesized by direct pillaring of IPC-1P or by grafting of (3-aminopropyl)silyl groups to the IPC-1P precursor preliminarily pillared with tetraethoxysilane (TEOS) were compared.

View Article and Find Full Text PDF

Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required.

View Article and Find Full Text PDF