GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations, such as poor optical confinement, lack of strain, thermal, and defects management, all of which are poorly discussed in the literature.
View Article and Find Full Text PDFWe demonstrate low-loss GaN/AlGaN planar waveguides grown by molecular beam epitaxy on sapphire substrates. By using a proper AlGaN cladding layer and reducing surface roughness we reach <1dB/cm propagation losses at 633nm. These low propagation losses allow an efficient second harmonic generation using modal phase matching between a TM0 pump at 1260nm and a TM2 second harmonic at 630nm.
View Article and Find Full Text PDF