Publications by authors named "Maksym Gaiduk"

The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article.

View Article and Find Full Text PDF

In order to ensure sufficient recovery of the human body and brain, healthy sleep is indispensable. For this purpose, appropriate therapy should be initiated at an early stage in the case of sleep disorders. For some sleep disorders (e.

View Article and Find Full Text PDF

Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest.

View Article and Find Full Text PDF

This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen's κ and accuracy.

View Article and Find Full Text PDF

The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach.

View Article and Find Full Text PDF

The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.

View Article and Find Full Text PDF

This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events.

View Article and Find Full Text PDF

This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method.

View Article and Find Full Text PDF

Objective: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep.

Approach: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages.

View Article and Find Full Text PDF