Publications by authors named "Maksudov F"

Aerial light detection and ranging (lidar) has emerged as a powerful technology for mapping urban archaeological landscapes, especially where dense vegetation obscures site visibility. More recently, uncrewed aerial vehicle/drone lidar scanning has markedly improved the resolution of three-dimensional point clouds, allowing for the detection of slight traces of structural features at centimetres of detail across large archaeological sites, a method particularly useful in areas such as mountains, where rapid deposition and erosion irregularly bury and expose archaeological remains. Here we present the results of uncrewed aerial vehicle-lidar surveys in Central Asia, conducted at two recently discovered archaeological sites in southeastern Uzbekistan: Tashbulak and Tugunbulak.

View Article and Find Full Text PDF
Article Synopsis
  • Embolization is a significant health issue, and while we understand that fibrin is crucial for blood clot stability, the mechanics of clot rupture are not fully understood.
  • Research indicates that altering thrombin or tissue factor (TF) concentrations affects the structure and toughness of blood clots, but their specific impact on rupture resistance hasn't been explored in depth.
  • The study found that increasing TF concentration improved fibrin toughness up to a certain point, revealing a complex relationship that emphasizes the need for understanding fibrin network structure to predict embolization risks better.
View Article and Find Full Text PDF

The origins and dispersal of the chicken across the ancient world remains one of the most enigmatic questions regarding Eurasian domesticated animals. The lack of agreement concerning timing and centers of origin is due to issues with morphological identifications, a lack of direct dating, and poor preservation of thin, brittle bird bones. Here we show that chickens were widely raised across southern Central Asia from the fourth century BC through medieval periods, likely dispersing along the ancient Silk Road.

View Article and Find Full Text PDF

Charge transport in biomolecules is crucial for many biological and technological applications, including biomolecular electronics devices and biosensors. RNA has become the focus of research because of its importance in biomedicine, but its charge transport properties are not well understood. Here, we use the Scanning Tunneling Microscopy-assisted molecular break junction method to measure the electrical conductance of particular 5-base and 10-base single-stranded (ss) RNA sequences capable of base stacking.

View Article and Find Full Text PDF

Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays.

View Article and Find Full Text PDF

Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation.

View Article and Find Full Text PDF

Elucidating the structure-function relationships for therapeutic RNA mimicking phosphorodiamidate morpholino oligonucleotides (PMOs) is challenging due to the lack of information about their structures. While PMOs have been approved by the US Food and Drug Administration for treatment of Duchenne muscular dystrophy, no structural information on these unique, charge-neutral, and stable molecules is available. We performed circular dichroism and solution viscosity measurements combined with molecular dynamics simulations and machine learning to resolve solution structures of 22-mer, 25-mer, and 30-mer length PMOs.

View Article and Find Full Text PDF

Central Asia is positioned at a crossroads linking several zones important to hominin dispersal during the Middle Pleistocene. However, the scarcity of stratified and dated archaeological material and paleoclimate records makes it difficult to understand dispersal and occupation dynamics during this time period, especially in arid zones. Here we compile and analyze paleoclimatic and archaeological data from Pleistocene Central Asia, including examination of a new layer-counted speleothem-based multiproxy record of hydrological changes in southern Uzbekistan at the end of MIS 11.

View Article and Find Full Text PDF

The region of Transoxiana underwent an early agricultural-demographic transition leading to the earliest proto-urban centers in Central Asia. The agronomic details of this cultural shift are still poorly studied, especially regarding the role that long-generation perennials, such as grapes, played in the cultivation system. In this paper, we present directly dated remains of grape pips from the early urban centers of Sapalli and Djarkutan, in south Uzbekistan.

View Article and Find Full Text PDF

RNA oligonucleotides are crucial for a range of biological functions and in many biotechnological applications. Herein, we measured, for the first time, the conductance of individual double-stranded (ds)RNA molecules and compared it with the conductance of single DNA : RNA hybrids. The average conductance values are similar for both biomolecules, but the distribution of conductance values shows an order of magnitude higher variability for dsRNA, indicating higher molecular flexibility of dsRNA.

View Article and Find Full Text PDF

Structural mechanisms underlying the mechanical properties of fibrin fibers are elusive. We combined tensile testing of uncrosslinked fibrin polymers in vitro and in silico to explore their material properties. The experimental stress (σ) - strain (ε) curves for fibrin fibers are characterized by elastic deformations with a weaker elastic response for ε<160% due to unraveling of αC tethers and straightening of fibrin protofibrils, and a stronger response for ε>160% owing to unfolding of the coiled coils and γ nodules in fibrin monomers.

View Article and Find Full Text PDF

Fibrin is the major determinant of the mechanical stability and integrity of blood clots and thrombi. To explore the rupture of blood clots, emulating thrombus breakage, we stretched fibrin gels with single-edge cracks of varying size. Ultrastructural alterations of the fibrin network correlated with three regimes of stress vs.

View Article and Find Full Text PDF

Single-molecule force spectroscopy has become a powerful tool for the exploration of dynamic processes that involve proteins; yet, meaningful interpretation of the experimental data remains challenging. Owing to low signal-to-noise ratio, experimental force-extension spectra contain force signals due to nonspecific interactions, tip or substrate detachment, and protein desorption. Unravelling of complex protein structures results in the unfolding transitions of different types.

View Article and Find Full Text PDF

We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the "Hertzian stiffness" (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles' elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture.

View Article and Find Full Text PDF

Development of antidotes against botulism requires understanding of the enzymatically active conformations of Botulinum neurotoxin serotype A (BoNT/A) light chain (LCA). We performed small angle X-ray scattering (SAXS) to characterize the solution structures of truncated light chain (tLCA). The 34-37 Å radius of gyration of tLCA was 1.

View Article and Find Full Text PDF

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population.

View Article and Find Full Text PDF

During the first millennium A.D., Central Asia was marked by broad networks of exchange and interaction, what many historians collectively refer to as the "Silk Road".

View Article and Find Full Text PDF

The ancient 'Silk Roads' formed a vast network of trade and exchange that facilitated the movement of commodities and agricultural products across medieval Central Asia via settled urban communities and mobile pastoralists. Considering food consumption patterns as an expression of socio-economic interaction, we analyse human remains for carbon and nitrogen isotopes in order to establish dietary intake, then model isotopic niches to characterize dietary diversity and infer connectivity among communities of urbanites and nomadic pastoralists. The combination of low isotopic variation visible within urban groups with isotopic distinction between urban communities irrespective of local environmental conditions strongly suggests localized food production systems provided primary subsistence rather than agricultural goods exchanged along trade routes.

View Article and Find Full Text PDF

A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and [Formula: see text]-based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid.

View Article and Find Full Text PDF