Optogenetics methods are rapidly being developed as therapeutic tools for treating neurological diseases, in particular, retinal degenerative diseases. A critical component of the development is testing the safety of the light stimulation used to activate the optogenetic proteins. While the stimulation needs to be sufficient to produce neural responses in the targeted retinal cell class, it also needs to be below photochemical and photothermal limits known to cause ocular damage.
View Article and Find Full Text PDFWe have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs) that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A ad, which was rendered atoxic by introducing two amino acid mutations to the light chain (LC) of wt BoNT/A, and which is being developed as a molecular vehicle for delivering drugs to the neuronal cytoplasm. The neuronal binding, internalization, and intracellular trafficking of BoNT/A ad in primary hippocampal cultures was evaluated using three complimentary techniques: flow cytometry, immunohistochemistry, and Western blotting.
View Article and Find Full Text PDF