Publications by authors named "Maksim Sulatsky"

The transition of β-barrel proteins from a soluble to an amyloid form is biologically significant in some cases but may lead to functional activity loss. In particular, odorant-binding proteins' (OBPs) fibrils are unable to bind odorant molecules potentially contributing to olfactory dysfunction. As shown previously, OBPs' fibrillogenesis is initiated by uncoupling of protein C-terminal fragment from the β-barrel and exposing amyloidogenic sites.

View Article and Find Full Text PDF
Article Synopsis
  • Over the past decade, research has focused on developing treatments for severe systemic and neurodegenerative diseases by targeting and degrading harmful amyloid deposits without significant side effects.
  • This study investigates the impact of the immune enzyme MMP9 on various amyloids linked to Alzheimer's, Parkinson's, and other diseases, revealing that its effectiveness is influenced by the size of amyloid clusters.
  • MMP9 degrades amyloids by disrupting their internal structures rather than just breaking hydrogen bonds, which helps avoid potential side effects from other anti-amyloid therapies while promoting the breakdown and safe handling of amyloid aggregates.
View Article and Find Full Text PDF

Background: The accumulation of ordered protein aggregates, amyloid fibrils, accompanies various neurodegenerative diseases (such as Parkinson's, Huntington's, Alzheimer's, etc.) and causes a wide range of systemic and local amyloidoses (such as insulin, hemodialysis amyloidosis, etc.).

View Article and Find Full Text PDF

The formation of amyloid fibrils is associated with many severe pathologies as well as the execution of essential physiological functions by proteins. Despite the diversity, all amyloids share a similar morphology and consist of stacked β-strands, suggesting high amyloidogenicity of native proteins enriched with β-structure. Such proteins include those with a β-barrel-like structure with β-strands arranged into a cylindrical β-sheet.

View Article and Find Full Text PDF

Extrapulmonary tuberculosis with a renal involvement can be a manifestation of a disseminated infection that requires therapeutic intervention, particularly with a decrease in efficacy of conventional regimens. In the present study, we investigated the therapeutic potency of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in the complex anti-tuberculosis treatment (ATT). A rabbit model of renal tuberculosis (rTB) was constructed by injecting of the standard strain Mycobacterium tuberculosis H37Rv into the cortical layer of the kidney parenchyma.

View Article and Find Full Text PDF

Ordered protein aggregates, amyloid fibrils, form toxic plaques in the human body in amyloidosis and neurodegenerative diseases and provide adaptive benefits to pathogens and to reduce the nutritional value of legumes. To identify the amyloidogenic properties of proteins and study the processes of amyloid fibril formation and degradation, the cationic dye thioflavin T (ThT) is the most commonly used. However, its use in acidic environments that induce amyloid formation in vitro can sometimes lead to misinterpretation of experimental results due to electrostatic repulsion.

View Article and Find Full Text PDF

The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog , we present data that cast doubt on its existence, at least in this species.

View Article and Find Full Text PDF

Outer membrane proteins (Omps) of Gram-negative bacteria represent porins involved in a wide range of virulence- and pathogenesis-related cellular processes, including transport, adhesion, penetration, and the colonization of host tissues. Most outer membrane porins share a specific spatial structure called the β-barrel that provides their structural integrity within the membrane lipid bilayer. Recent data suggest that outer membrane proteins from several bacterial species are able to adopt the amyloid state alternative to their β-barrel structure.

View Article and Find Full Text PDF

Odorant-binding proteins are involved in perceiving smell by capturing odorants within the protein's β-barrel. On the example of bovine odorant-binding protein (bOBP), the structural organization of such proteins and their ability to bind ligands under various conditions in vitro were examined. We found a tendency of bOBP to form oligomers and small amorphous aggregates without disturbing the integrity of protein monomers at physiological conditions.

View Article and Find Full Text PDF

Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea L.

View Article and Find Full Text PDF

The most obvious manifestation of amyloidoses is the accumulation of amyloid fibrils as plaques in tissues and organs, which always leads to a noticeable deterioration in the patients' condition and is the main marker of the disease. For this reason, early diagnosis of amyloidosis is difficult, and inhibition of fibrillogenesis, when mature amyloids are already accumulated in large quantities, is ineffective. A new direction for amyloidosis treatment is the development of approaches aimed at the degradation of mature amyloid fibrils.

View Article and Find Full Text PDF

Amyloids represent protein aggregates with highly ordered fibrillar structure associated with the development of various disorders in humans and animals and involved in implementation of different vital functions in all three domains of life. In prokaryotes, amyloids perform a wide repertoire of functions mostly attributed to their interactions with other organisms including interspecies interactions within bacterial communities and host-pathogen interactions. Recently, we demonstrated that free-living cells of , a nitrogen-fixing symbiont of legumes, produce RopA and RopB which form amyloid fibrils at cell surface during the stationary growth phase thus connecting amyloid formation and host-symbiont interactions.

View Article and Find Full Text PDF

The observed differences in the structure of native tissue and tissue formed in vitro cause the loss of functional activity of cells cultured in vitro. The lack of fundamental knowledge about the protein mechanism interactions limits the ability to effectively create in vitro native tissue. Collagen is able to spontaneously assemble into fibrils in vitro, but in vivo, other proteins, for example fibronectin, have a noticeable effect on this process.

View Article and Find Full Text PDF

The accumulation of β-sheet-rich protein aggregates, amyloid fibrils, accompanies severe pathologies (Alzheimer's, Parkinson's diseases, ALS, etc.). The high amyloidogenicity of proteins with a native β-barrel structure, and the amyloidogenic peptides ability to form a universal cylindrin-like oligomeric state were proven.

View Article and Find Full Text PDF

The relative abundance of two main Abeta-peptide types with different lengths, Aβ40 and Aβ42, determines the severity of the Alzheimer's disease progression. However, the factors responsible for different behavior patterns of these peptides in the amyloidogenesis process remain unknown. In this comprehensive study, new evidence on Aβ40 and Aβ42 amyloid polymorphism was obtained using a wide range of experimental approaches, including custom-designed approaches.

View Article and Find Full Text PDF

Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged.

View Article and Find Full Text PDF

Green fluorescent proteins (GFP) are commonly used as fluorescent tags and biosensors in cell biology and medicine. However, the propensity of GFP-like proteins to aggregate and the consequence of intermolecular interaction for their application have not been thoroughly examined. In this work, alternative aggregation pathways of superfolder green fluorescent protein (sfGFP) were demonstrated using a spectroscopic and microscopic study of the samples prepared by equilibrium microdialysis.

View Article and Find Full Text PDF

Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids. We showed that the proteolytic enzyme of the pancreas, trypsin, induced degradation of amyloid fibrils, and the mechanism of this process was qualitatively the same for all investigated amyloids.

View Article and Find Full Text PDF

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology.

View Article and Find Full Text PDF

Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis.

View Article and Find Full Text PDF

The persistence of high concentrations of beta-2-microglobulin (β2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of β2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length β2M (β2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6β2m and ΔN10β2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT).

View Article and Find Full Text PDF

In this work, α-synuclein amyloid fibrils-the formation of which is a biomarker of Parkinson's disease-were investigated using the fluorescent probe thioflavin T (ThT). The experimental conditions of protein fibrillogenesis were chosen so that a sufficient number of continuous measurements could be performed to characterize and analyze all stages of this process. The reproducibility of fibrillogenesis and the structure of the obtained aggregates (which is a critical point for further investigation) were proven using a wide range of physical-chemical methods.

View Article and Find Full Text PDF

Amyloids are protein fibrils with a characteristic spatial structure. Amyloids were long perceived as the pathogens involved in a set of lethal diseases in humans and animals. In recent decades, it has become clear that amyloids represent a quaternary protein structure that is not only pathological but also functionally important and is widely used by different organisms, ranging from archaea to animals, to implement diverse biological functions.

View Article and Find Full Text PDF