Publications by authors named "Makrina Totsika"

In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.

View Article and Find Full Text PDF

Disulfide bond (Dsb) oxidoreductases involved in oxidative protein folding govern bacterial survival and virulence. Over the past decade, oligomerization has emerged as a potential factor that dictates oxidoreductase activities. To investigate the role of oligomerization, we studied three Dsb-like ScsC oxidoreductases involved in copper resistance: the monomeric StScsC, and the trimeric PmScsC and CcScsC.

View Article and Find Full Text PDF

The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis.

View Article and Find Full Text PDF

Infections caused by methicillin-resistant (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are the second most common bacterial infection with high recurrence rates and can involve biofilm formation on patient catheters. Biofilms are inherently tolerant to antimicrobials, making them difficult to eradicate. Many antibiofilm agents alone do not have bactericidal activity; therefore, linking them to antibiotics is a promising antibiofilm strategy.

View Article and Find Full Text PDF

Bacterial urinary tract infections (UTIs) are both common and exhibit high recurrence rates in women. UTI healthcare costs are increasing due to the rise of multidrug-resistant (MDR) bacteria, necessitating alternative approaches for infection control. Here, we directly observed host adaptive immune responses in acute UTI.

View Article and Find Full Text PDF

Escherichia coli K-12 is a model organism for bacteriology and has served as a workhorse for molecular biology and biochemistry for over a century since its first isolation in 1922. However, Escherichia coli K-12 strains are phenotypically devoid of an O antigen (OAg) since early reports in the scientific literature. Recent studies have reported the presence of independent mutations that abolish OAg repeating-unit (RU) biogenesis in E.

View Article and Find Full Text PDF

Bacterial capsules provide protection against environmental challenges and host immunity. Historically, Escherichia coli K serotyping scheme, which relies on the hypervariable capsules, has identified around 80 K forms that fall into four distinct groups. Based on recent work by us and others, we predicted that E.

View Article and Find Full Text PDF

Infectious diseases caused by bacterial pathogens are a leading cause of mortality worldwide. In particular, recalcitrant bacterial communities known as biofilms are implicated in persistent and difficult to treat infections. With a diminishing antibiotic pipeline, new treatments are urgently required to combat biofilm infections.

View Article and Find Full Text PDF

Background: Optimising first time success of peripheral intravenous catheter (PIVC) insertion and reducing intravenous (IV) complications in cancer patients undergoing contrast-enhanced computed tomography (CT) is vital to ensure vascular access preservation and diagnostic accuracy. The aim of this study was to test the feasibility of a randomised controlled trial (RCT) evaluating a novel perforated PIVC compared to a standard PIVC.

Methods: A single centre, parallel-group, pilot RCT was conducted between March and May 2020.

View Article and Find Full Text PDF

The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly DsbA (EcDsbA), has demonstrated the key role that the Cys-XX-Cys catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme.

View Article and Find Full Text PDF

The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides.

View Article and Find Full Text PDF

IcsA is a versatile surface virulence factor required for early and late pathogenesis stages extracellularly and intracellularly. Despite IcsA serving as a model Type V secretion system (T5SS) autotransporter to study host-pathogen interactions, its detailed molecular architecture is poorly understood. Recently, IcsA was found to switch to a different conformation for its adhesin activity upon sensing the host stimuli by Type III secretion system (T3SS).

View Article and Find Full Text PDF

The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them.

View Article and Find Full Text PDF

The study of clinically relevant bacterial pathogens relies on molecular and genetic approaches. However, the generally low transformation frequency among natural isolates poses technical hurdles to widely applying common methods in molecular biology, including transformation of large constructs, chromosomal genetic manipulation, and dense mutant library construction. Here we demonstrate that culturing clinical isolates in the presence of polymyxin B nonapeptide (PMBN) improves their transformation frequency via electroporation by up to 100-fold in a dose-dependent and reversible manner.

View Article and Find Full Text PDF

The global epidemiology of multidrug resistant Klebsiella pneumoniae, a serious threat to both animal and human health, is dominated by the spread of pathogenic clones, each separately evolving via acquisition of transferable antibiotic resistance or niche-specific virulence determinants. In horses, K. pneumoniae infection can lead to severe respiratory illness.

View Article and Find Full Text PDF

Antibiotic resistance is one of the most prominent threats to modern medicine. In the latest World Health Organization list of bacterial pathogens that urgently require new antibiotics, 9 out of 12 are Gram-negative, with four being of "critical priority." One crucial barrier restricting antibiotic efficacy against Gram-negative bacteria is their unique cell envelope.

View Article and Find Full Text PDF
Article Synopsis
  • * The focus is on autotransporters, specifically Ag43 variants from different Escherichia coli strains, which are crucial for forming these aggregates and biofilms.
  • * The study reveals that specific amino acid interactions between Ag43 proteins influence how bacteria clump together and their density within communities, providing insights into their varying aggregation behaviors.
View Article and Find Full Text PDF

Microbial biofilms are becoming increasingly difficult to treat in the medical setting due to their intrinsic resistance to antibiotics. To combat this, several biofilm dispersal agents are currently being developed as treatments for biofilm infections. Combining biofilm dispersal agents with antibiotics is emerging as a promising strategy to simultaneously disperse and eradicate biofilms or, in some cases, even inhibit biofilm formation.

View Article and Find Full Text PDF

The introduction of disulfide bonds into periplasmic proteins is a critical process in many Gram-negative bacteria. The formation and regulation of protein disulfide bonds have been linked to the production of virulence factors. Understanding the different pathways involved in this process is important in the development of strategies to disarm pathogenic bacteria.

View Article and Find Full Text PDF

To address the increasing demand for safe and effective treatment options for pelvic organ prolapse (POP) due to the worldwide ban of the traditional polypropylene meshes, this study introduced degradable polycaprolactone (PCL)/polyethylene glycol (PEG) composite meshes fabricated with melt-electrowriting (MEW). Two PCL/PEG mesh groups: 90:10 and 75:25 (PCL:PEG, wt%) were fabricated and characterized for their degradation rate and mechanical properties, with PCL meshes used as a control. The PCL/PEG composites showed controllable degradation rates by adjusting the PEG content and produced mechanical properties, such as maximal forces, that were higher than PCL alone.

View Article and Find Full Text PDF

Isothiazolones are widely used as biocides in industrial processing systems and personal care products, but their use to treat infections in humans has been hampered by their inherent cytotoxicity. Herein, we report a strategy to alleviate isothiazolone toxicity and improve antibacterial and antibiofilm potency by functionalization with a nitroxide moiety. Isothiazolone-nitroxide hybrids and were prepared over three steps in moderate yields (58 and 36%, respectively) from ()-3-(benzylsulfanyl)-propenoic acid.

View Article and Find Full Text PDF

Many antibiotic resistant uropathogenic Escherichia coli (UPEC) strains belong to clones defined by their multilocus sequence type (ST), with ST131 being the most dominant. Although we have a good understanding of resistance development to fluoroquinolones and third-generation cephalosporins by ST131, our understanding of the virulence repertoire that has contributed to its global dissemination is limited. Here we show that the genes encoding Afa/Dr fimbriae, a group of adhesins strongly associated with UPEC that cause gestational pyelonephritis and recurrent cystitis, are found in approximately one third of all ST131 strains.

View Article and Find Full Text PDF

DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram-negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X-ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V.

View Article and Find Full Text PDF