The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance.
View Article and Find Full Text PDFDesigning suitable anion exchange ionomers is critical to improving the performance and in situ durability of anion exchange membrane water electrolyzers (AEMWEs) as one of the promising devices for producing green hydrogen. Herein, highly gas-permeable and dimensionally stable anion exchange ionomers (QC6xBA and QC6xPA) are developed, in which bulky cyclohexyl (C6) groups are introduced into the polymer backbones. QC6BA-2.
View Article and Find Full Text PDFThe rational design of efficient and low-cost electrocatalysts based on earth-abundant materials is imperative for large-scale production of hydrogen by water electrolysis. Here we present a strategy to prepare highly active catalyst materials through modifying the crystallinity of the surface/interface of strongly coupled transition metal-metal oxides. We have thermally activated the catalysts to construct amorphous/crystalline Ni-Fe oxide interfaced with a conductive Ni-Fe alloy and systematically investigated their electrocatalytic performance toward the hydrogen evolution and oxygen evolution reactions (HER and OER) in alkaline solution.
View Article and Find Full Text PDFSwelling of a gel film attached to a soft substrate can induce surface instability, which results in the formation of highly ordered patterns such as wrinkles and folds. This phenomenon has been exploited to fabricate functional devices and rationalize morphogenesis. However, obtaining centimeter-scale patterns without immersing the film in a solvent remains challenging.
View Article and Find Full Text PDFA full understanding of the elastic properties of hydrogels under swelling is required for their practical application in the chemical and biomedical engineering fields. This is because hydrogels are expected to retain water during mechanical use in moist atmospheres. In the present study, we investigated the relationship between the elastic modulus and the swelling ratio in a specific type of hydrogel (a polyacrylamide gel).
View Article and Find Full Text PDFWe report on the preparation of reinforced membranes (SPP-QP-PE, where SPP stands for sulfonated polyphenylene), composed of an in-house proton-conductive polyphenylene ionomer (SPP-QP) and a flexible porous polyethylene (PE) mechanical support layer. By applying the push coating method, dense, uniform, transparent, and thin SPP-QP-PE membranes were obtainable. The use of SPP-QP with higher ion exchange capacity induced very high proton conductivity of SPP-QP-PE, leading to high fuel cell performance even at low humidified conditions (e.
View Article and Find Full Text PDFAn 18-month-old female Holstein Friesian heifer presented with a history of stunted growth and a recent onset of anorexia; she presented with cyanosis and eventually died. A postmortem examination revealed obstruction of the right ventricular outflow tract, ventricular septal defect, overriding aortic root, right ventricular hypertrophy, and an atrial septal defect, indicating a pentalogy of Fallot (POF). In addition to POF, the heifer also had pulmonary artery dilatation, although she did not present with patent ductus arteriosus.
View Article and Find Full Text PDFSemiconducting oxide nanoparticles are strongly influenced by surface-adsorbed molecules and tend to generate an insulating depletion layer. The interface between a noble metal and a semiconducting oxide constructs a Schottky barrier, interrupting the electron transport. In the case of a Pt catalyst supported on the semiconducting oxide Nb-doped SnO with a fused-aggregate network structure (Pt/Nb-SnO) for polymer electrolyte fuel cells, the electronic conductivity increased abruptly with increasing Pt loading, going from 10 to 10 S cm.
View Article and Find Full Text PDFNovel anion-conductive polymers containing perfluoroalkyl and ammonium-functionalized fluorene groups were synthesized and characterized. The quaternized polymers synthesized using a dimethylaminated fluorene monomer had a well-defined chemical structure in which each fluorenyl group was substituted with two ammonium groups at specific positions. The resulting polymers had a high molecular weight ( = 8.
View Article and Find Full Text PDFExperimental evaluation and modeling are important steps in the investigation of the mechanical behaviors of hydrogels in the small- to large-strain range. In this study, the effects of cross-linking and swelling on the true stress-strain response of a specific type of hydrogel (polyacrylamide) were evaluated using a uniaxial tensile test. The development of true strain on the surface of the hydrogel was measured using the digital image correlation method.
View Article and Find Full Text PDFThe objective of the present study is to establish the experimental modeling process of the nonuniform deformation behavior of heterogeneous materials. For this purpose, the constant stress moment, which is the work conjugate quantity of the constant strain gradient for the finite volume evaluation region, is introduced. The proposed stress moment can be evaluated from the stress field.
View Article and Find Full Text PDFProton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability).
View Article and Find Full Text PDFAnion conductivity at the surfaces of two anion-exchange membranes (AEMs), quaternized ammonium poly(arylene ether) multiblock copolymer (QPE-bl-3) and quaternized ammonium poly(arylene perfluoro-alkylene) copolymer (QPAF-1), synthesized by our group was investigated using current-sensing atomic force microscopy under purified air at various relative humidities. The anion-conducting spots were distributed inhomogeneously on the surface of QPE-bl-3, and the total areas of the anion-conducting spots and the current at each spot increased with humidity. The anion-conductive areas on QPAF-1 were found on the entire surface even at a low humidity.
View Article and Find Full Text PDFWe synthesized Pt and PtRu catalysts supported on Nb-doped SnO(2-δ) (Pt/Sn0.99Nb0.01O(2-δ), PtRu/Sn0.
View Article and Find Full Text PDFCorynebacterium glutamicum is known to perform a unique form of cell division called post-fission snapping division. In order to investigate the mechanism of cell division of this bacterium, we isolated temperature-sensitive mutants from C. glutamicum wild-type strain ATCC 31831, and found that one of them, M45, produced high frequencies of mini-cells with no nucleoids.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2014
A double-layer ionomer membrane, thin-layer Nafion (perfluorinated sulfonic acid polymer) on a sulfonated aromatic block copolymer (SPK-bl-1), was prepared for improving fuel cell performance. Each component of the double-layer membrane showed similar phase-separated morphologies to those of the original membranes. A fuel cell with the double-layer membrane exhibited lower ohmic resistance and higher cathode performance than those with the original SPK-bl-1 membrane despite their comparable water uptake and proton conductivity.
View Article and Find Full Text PDFWe report herein temperature- and humidity-controlled small-angle X-ray scattering (SAXS) analyses of proton-conductive ionomer membranes. The morphological changes of perfluorosulfonic acid polymers (Nafion and Aquivion) and sulfonated aromatic block copolymers (SPE-bl-1 and SPK-bl-1) were investigated and compared under conditions relevant to fuel cell operation. For the perfluorinated ionomer membranes, water molecules were preferentially incorporated into ionic clusters, resulting in phase separation and formation of ion channels.
View Article and Find Full Text PDFThe effect of platinum loading on cathode performance in hydrogen/oxygen fuel cells was investigated using perfluorosulfonic acid (Nafion), sulfonated polyimide (SPI-8) and sulfonated poly(phenylene ether ether ketone) (SPEEK) ionomers as the electrode binder. By lowering the platinum loading, the cathode polarization decreased for MEAs using SPI-8 and SPEEK binders at high humidity (90-100% RH (relative humidity)) due to an improvement of mass transport (oxygen supply and/or water discharge) in the catalyst layer. In contrast, at humidity lower than 80% RH, the effect of platinum loading on the cathode performance differed between these two hydrocarbon (HC) ionomers.
View Article and Find Full Text PDFBacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2012
Sulfonated polyimide (SPI-8) ionomers were used as binders in the catalyst layers, and their fuel cell performance was evaluated. SPI-8 ionomers functioned well in the anode with only minor overpotential even at low humidity (50% relative humidity (RH)). In contrast, the cathode performance was significantly dependent on the content and molecular weight of the ionomers and humidity of the supplied gases.
View Article and Find Full Text PDFThe stability of poly(arylene ether sulfone ketone) (SPESK) multiblock copolymer membranes having highly sulfonated hydrophilic blocks was tested in an operating fuel cell. The electrochemical properties and drain water were monitored during the test, followed by post-test analyses of the membrane. During a 2000-h fuel cell operation test at 80 °C and 53% RH (relative humidity) and with a constant current density (0.
View Article and Find Full Text PDFPoly(arylene ether sulfone ketone) (SPESK) multiblock copolymers having highly sulfonated hydrophilic blocks were synthesized and the fuel cell performance with the copolymers was investigated. A membrane electrode assembly (MEA) using an SPESK ionomer with an ion exchange capacity of 1.8 mequiv g(-1) as membrane and Nafion as the electrode binder showed comparable fuel cell performance and ohmic resistance to that using a Nafion NRE 211 membrane at 80 degrees C and 30% relative humidity (RH).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2007
The effect of initial spin configurations on zero-temperature Glauber spin dynamics in complex networks is investigated. In a system in which the initial spins are defined by centrality measures at the vertices of a network, a variety of nontrivial diffusive behaviors arise, particularly in relation to functional relationships between the initial and final fractions of positive spins, some of which exhibit a critical point. Notably, the majority spin in the initial state is not always dominant in the final state and the phenomena that occur as a result of the dynamics differ according to the initial condition, even for the same network.
View Article and Find Full Text PDFRecent progress in plant molecular genetics has revealed that floral organ development is regulated by several homeotic selector genes, most of which belong to the MADS-box gene family. Here we report on SrMADS1,a MIKC(c)-type MADS-box gene from Selaginella, a spikemoss belonging to the lycophytes. SrMADS1 phylogenetically forms a monophyletic clade with genes of the LAMB2 group, which are MIKC(c) genes of the clubmoss Lycopodium, and is expressed in whole sporophytic tissues except roots and rhizophores.
View Article and Find Full Text PDF