Publications by authors named "Makoto Tsubokura"

The use of masks as a measure to control the spread of respiratory viruses has been widely acknowledged. However, there are instances where wearing a mask is not possible, making these environments potential vectors for virus transmission. Such environments can contain multiple sources of infection and are challenging to characterize in terms of infection risk.

View Article and Find Full Text PDF

As evidenced by the worldwide pandemic, respiratory infectious diseases and their airborne transmission must be studied to safeguard public health. This study focuses on the emission and transport of speech-generated droplets, which can pose risk of infection depending on the loudness of the speech, its duration and the initial angle of exhalation. We have numerically investigated the transport of these droplets into the human respiratory tract by way of a natural breathing cycle in order to predict the infection probability of three strains of SARS-CoV-2 on a person who is listening at a one-meter distance.

View Article and Find Full Text PDF

This study was designed to develop a computational fluid dynamics (CFD) method for unsteady analysis of a series of ski jump movements with attitude changes, and to analyse the aerodynamic characteristics of an expert jumper over the entire ski jump movement. Two ski jumpers participated in this study. A sensor-based motion capture suit was used to capture the jumper's posture during the actual ski jump.

View Article and Find Full Text PDF

The fastest supercomputer in 2020, Fugaku, has not only achieved digital transformation of epidemiology in allowing end-to-end, detailed quantitative modeling of COVID-19 transmissions for the first time but also transformed the behavior of the entire Japanese public through its detailed analysis of transmission risks in multitudes of societal situations entailing heavy risks. A novel aerosol simulation methodology was synthesized out of a combination of a new CFD methods meeting industrial demands in the solver, CUBE (Jansson et al., 2019), which not only allowed the simulations to scale massively with high resolution required for micrometer virus-containing aerosol particles but also enabled extremely rapid time-to-solution due to its ability to generate the digital twins representing multitudes of societal situations in a matter of minutes, attaining true overall application high performance; such simulations have been running for the past 1.

View Article and Find Full Text PDF

A numerical simulation of sibilant /s/ production with the realistically moving vocal tract was conducted to investigate the flow and acoustic characteristics during the articulation process of velopharyngeal closure and tongue movement. The articulation process was simulated from the end of /u/ to the middle of /s/ in the Japanese word /usui/, including the tongue elevation and the velopharyngeal valve closure. The time-dependent vocal tract geometry was reconstructed from the computed tomography scan.

View Article and Find Full Text PDF

Dental professionals are at high risk of exposure to communicable diseases during clinical practice, but many dental clinics provide clinical care in closed spaces. Therefore, it is essential to develop efficient ventilation methods in dental clinics that do not rely on natural ventilation. In this study, to clarify the factors that cause air retention in dental offices, we conducted computational flow dynamics simulations focusing on (1) the flow path from the entrance to the exhaust port and (2) the presence of partitions.

View Article and Find Full Text PDF

The dose-response model has been widely used for quantifying the risk of infection of airborne diseases like COVID-19. The model has been used in the room-average analysis of infection risk and analysis using passive scalars as a proxy for aerosol transport. However, it has not been employed for risk estimation in numerical simulations of droplet dispersion.

View Article and Find Full Text PDF

The effects of the inclination angle of the incisor on the speech production of the fricative consonant /s/ was investigated using an implicit compressible flow solver. The hierarchical structure grid was applied to reduce the grid generation time for the vocal tract geometry. The airflow and sound during the pronunciation of /s/ were simulated using the adaptively switched time stepping scheme, and the angle of the incisor in the vocal tract was changed from normal position up to 30°.

View Article and Find Full Text PDF

Large-eddy simulations are conducted for a rotating golf ball and a rotating smooth sphere at a constant rotational speed at the subcritical, critical and supercritical Reynolds numbers. A negative lift force is generated in the critical regime for both models, whereas positive lift forces are generated in the subcritical and supercritical regimes. Detailed analysis on the flow separations on different sides of the models reveals the mechanism of the negative Magnus effect.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of posture of a ski jumper on aerodynamic characteristics during the take-off using computational fluid dynamics (CFD). The CFD method adopted for this study was based on Large-Eddy Simulation. Body surface data were obtained by 3-D laser scanning of an active ski jumper.

View Article and Find Full Text PDF