Some nutrients, such as carbohydrate, fat and protein, are known to stimulate satiety. However, the effect of sn-2-monoacylglycerol (2-MG), one of the digestive products of triglycerides, on food intake is still unclear. In the present study, the effects of 2-MG on food intake and diarrhea were evaluated and compared with long-chain fatty acid (LCFA) in rats by intrajejunal infusion.
View Article and Find Full Text PDFJTT-130 was developed as an intestine-specific MTP inhibitor designed to rapidly catabolize after absorption to avoid causing hepatotoxicity due to hepatic MTP inhibition. In previous reports, we have demonstrated that JTT-130 suppresses dietary lipid absorption in the small intestine without inducing hepatic steatosis. Thus, in this report, JTT-130 was administered to hyperlipidemic animals fed a Western diet to investigate the effect of intestinal MTP inhibition on lipid metabolism and progression of atherosclerosis.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) arises primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important in the development of T2DM, including obesity. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase 1 inhibitor, reduced body weight depending on dietary fat in diet-induced obesity (DIO) rats in our previous study.
View Article and Find Full Text PDFAim: Monoacyglycerol acyltransferases (MGATs) are known to play important roles in intestinal TG absorption. In contrast, the role of MGATs in the liver is still unclear. We investigated the effects of JTP-103237, a novel MGAT inhibitor, on hepatic MGAT activity and hepatic lipid metabolism.
View Article and Find Full Text PDFMonoacylglycerol acyltransferase 2 (MGAT2) plays an important role in intestinal fat absorption. We discovered the novel MGAT2 inhibitor, JTP-103237, and evaluated its pharmacological profile. JTP-103237 selectively inhibited MGAT2 without remarkable species differences and reduced absorbed lipids in circulation.
View Article and Find Full Text PDFAcyl CoA:diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the final step in triglyceride (TG) synthesis. This enzyme is considered to be a potential therapeutic target for obesity and diabetes. Here, results of an investigation of the pharmacological effects of JTT-553 [trans-5'-(4-amino-7,7-dimethyl-2-trifluoromethyl-7H-pyrimido[4,5-b][1,4]oxazin-6-yl)-2',3'-dihydrospiro(cyclohexane-1,1'-inden)-4-yl]acetic acid monobenzenesulfonate, a novel DGAT1 inhibitor, are reported.
View Article and Find Full Text PDFDiminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model.
View Article and Find Full Text PDFMicrosomal triglyceride transfer protein (MTP) is involved in the assembly and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. JTT-130 is a novel intestine-specific MTP inhibitor, which has been shown to be useful in the prevention and treatment of dyslipidemia, obesity, and diabetes. JTT-130 has also been shown to suppress food intake in a dietary fat-dependent manner in rats.
View Article and Find Full Text PDFWe investigated the effects of JTT-130 on glucose and lipid metabolism independent of the suppression of feeding by comparing with pair-fed animals. Male Zucker diabetic fatty (ZDF) rats were divided into control, JTT-130 treatment, and pair-fed groups. The rats were fed with a regular powdered diet with or without JTT-130 as a food admixture for 6 weeks.
View Article and Find Full Text PDFWe investigated effects on glucose and lipid metabolism in combination of JTT-130, a novel intestine-specific microsomal triglyceride transfer protein (MTP) inhibitor, and pioglitazone, peroxisome proliferator-activated receptor (PPAR) γ agonist. Male Zucker diabetic fatty rats were divided into 4 groups: control group, JTT-130 treatment group, pioglitazone treatment group, and combination group. The Zucker diabetic fatty rats were fed a regular powdered diet with JTT-130 and/or pioglitazone as a food admixture for 6 weeks.
View Article and Find Full Text PDFThe microsomal triglyceride transfer protein (MTP) takes part in the mobilization and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. In this study, we investigated the effects of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), a novel intestine-specific MTP inhibitor, on food intake, gastric emptying, and gut peptides using Sprague-Dawley rats fed 3.1% fat, 13% fat, or 35% fat diets.
View Article and Find Full Text PDFBlood pressure in female SDT-fa/fa rats was periodically investigated at ages 8, 16, and 24 weeks. Furthermore, an insulin therapy was performed for 5 weeks in the female rats at age 11 weeks, and the change of blood pressure was examined. In addition to obesity, hyperglycemia, hyperinsulinemia, and hyperlipidemia, hyperleptinemia and increased urinary angiotensinogen level were observed during the experimental period.
View Article and Find Full Text PDFInhibitors of microsomal triglyceride transfer protein (MTP) expressed in the liver and small intestine are potential candidates for lipid-lowering agents. However, inhibition of hepatic MTP could lead to significant safety issues such as fatty liver disease. To develop a specific inhibitor of intestinal MTP, JTT-130 [diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl)amino]phenyl}acetyloxymethyl)-2-phenylmalonate], was designed to be rapidly hydrolyzed in the absorption process.
View Article and Find Full Text PDFThe Spontaneously Diabetic Torii (SDT) fatty rat, established by introducing the fa allele of the Zucker fatty rat into the SDT rat genome, is a new model of obesity/type 2 diabetes. The present study investigated effects of food restriction on metabolic and endocrinological function in SDT fatty rats. SDT fatty rats were pair-fed with SDT rats from 7 to 21 weeks of age.
View Article and Find Full Text PDFThe mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity.
View Article and Find Full Text PDFIt is well known that rats and mice, when fed a high-fat diet, develop obesity associated with abnormal glycolipid metabolism. In this study, we investigated the effects of a high-fat diet on a diabetic rat model, Spontaneously Diabetic Torii (SDT), which develops diabetes due to decreased insulin production and secretion with age. We hypothesized that a high-fat diet would accelerate the induction of diabetes in this model.
View Article and Find Full Text PDFThe Spontaneously Diabetic Torii-Lepr(fa) (SDT-fa/fa) rat, a new model of obese type 2 diabetes, shows obesity, hyperglycemia, and hyperlipidemia from 6 weeks of age. Diabetic complications such as nephropathy and cataract are observed with aging; however, blood pressure change with age has not previously been examined. In this study, blood pressure was periodically measured and the change was investigated.
View Article and Find Full Text PDFObesity, hyperglycemia, hyperlipidemia, and diabetes-associated complications appear at younger ages (6-8 weeks) in the male Spontaneously Diabetic Torii-Lepr(fa) (SDT-fa/fa) rat than in the male original SDT (SDT-+/+) rat. However, the incidence and progression of diabetes mellitus and diabetic complications in the female SDT-fa/fa rat have not been reported in detail. In the present study, the pathophysiological features of the female SDT-fa/fa rat were examined, and compared with those of the female SDT-+/+ rat.
View Article and Find Full Text PDFIntestinal infusion of long-chain fatty acids (LCFAs) strongly suppresses food intake and gut motility. Vagal afferents and cholecystokinin (CCK) signaling pathway are considered to play important roles in intestinal LCFA-induced satiety. Here, we first investigated the influence of vagus nerve on satiety following intestinal LCFA infusion in rats.
View Article and Find Full Text PDFObjective: LOX-1 is a multi-ligand receptor originally identified as the endothelial oxidized LDL receptor. LOX-1 expression is also induced in smooth muscle cells in response to proinflammatory and oxidative stimuli. Here, we report on the role of LOX-1 in intimal hyperplasia, in which proinflammatory and oxidative stimuli are increased.
View Article and Find Full Text PDF