The chestnut tiger butterfly, , can undertake long-distance migrations. They flap their wings for power flight and hold the wings for gliding; such repertoires of wing movements may be the key to explaining their excellent flight abilities. Measuring flight muscle activity using the electromyogram (EMG) is the first step toward understanding the neuromuscular mechanism of active flight control.
View Article and Find Full Text PDFWe theoretically studied the optimal control, frequency lock-in, and phase lock-in phenomena due to the spatially localized periodic forcing in flow past an inclined plate. Although frequency lock-in is evident in many fluid phenomena, especially fluid-structure interactions, not many researchers have investigated it using a theoretical approach based on flow details. We obtained detailed information on the lock-in phenomena to external periodic forcing using phase reduction theory, a mathematical method for extracting the dynamics near the limit cycle.
View Article and Find Full Text PDFWe have developed a self-propelled object, which is composed of a plastic cup and a camphor disk, on water to reflect its three-dimensional shape in the nature of motion. The self-propelled object, of which the driving force of motion is the difference in the surface tension, exhibited oscillatory motion between motion and rest. The period and the maximum speed of oscillatory motion increased and decreased depending on the height of the cup, , respectively.
View Article and Find Full Text PDFMicroorganisms respond to environmental conditions and often spontaneously form highly ordered convection patterns. This mechanism has been well-studied from the viewpoint of self-organization. However, environmental conditions in nature are usually dynamic.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2023
The cell motion of in homogeneous and heterogeneous light environments was analyzed. Homogeneous and heterogeneous environments were prepared, with only a red color or with a red circle surrounded by brighter white regions, respectively. In a heterogeneous environment, the cells move into the red circle.
View Article and Find Full Text PDFWe propose a phase reduction technique that provides the phase sensitivity function, which is one of the essential functions in phase reduction theory, on a target region. A system with a large degree of freedom and global coupling, such as an incompressible fluid system, is emphasized. Such a system poses challenges for the numerical calculation of the phase sensitivity function, which cannot be resolved using known algorithms such as the direct method or the adjoint method.
View Article and Find Full Text PDFPhase reduction theory has been applied to many systems with limit cycles; however, it has limited applications in incompressible fluid systems. This is because the calculation of the phase sensitivity function, one of the fundamental functions in phase reduction theory, has a high computational cost for systems with a large degree of freedom. Furthermore, incompressible fluid systems have an implicit expression of the Jacobian.
View Article and Find Full Text PDFThe transition of the vortex pattern and the lift generated by a heaving wing in a uniform flow was investigated numerically. As a fundamental problem constituting the insects' flight maneuverability, we studied the relationship between a temporal change in the heaving wing motion and the change in the global vortex pattern. At a Strouhal number that generates an asymmetric vortex pattern, we found that temporal angular frequency reduction causes inversion of both the global vortex pattern and the lift sign.
View Article and Find Full Text PDFWe examined the influence of internal noise on the irregular switching of the shape of the free surface of fluids in an open cylindrical vessel driven by a bottom disk rotating at constant speed [Suzuki, Iima, and Hayase, Phys. Fluids 18, 101701 (2006)PHFLE61070-663110.1063/1.
View Article and Find Full Text PDFWe have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments.
View Article and Find Full Text PDFThe ability to continue flowering after loss of inductive environmental cues that trigger flowering is termed floral commitment. Reversible transition involving a switch from floral development back to vegetative development has been found in Arabidopsis mutants and many plant species. Although the molecular basis for floral commitment remains unclear, recent studies suggest that the persistent activity of FLOWERING LOCUS T (FT) at inflorescences is required for floral commitment in Arabidopsis thaliana.
View Article and Find Full Text PDFThe objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings.
View Article and Find Full Text PDFMath Med Biol
September 2012
We study how the net transport and mixing of chemicals occur in a relatively large amoeba, the true slime mold Physarum polycephalum. The shuttle streaming of the amoeba is characterized by a rhythmic flow of the order of 1 μm/s in which the protoplasm streams back and forth. To explain the experimentally observed transport of chemicals, we formulate a simplified model to consider the mechanism by which net transport can be induced by shuttle (or periodic) motion inside the amoeba.
View Article and Find Full Text PDFWhen two food sources are presented to the slime mold Physarum in the dark, a thick tube for absorbing nutrients is formed that connects the food sources through the shortest route. When the light-avoiding organism is partially illuminated, however, the tube connecting the food sources follows a different route. Defining risk as the experimentally measurable rate of light-avoiding movement, the minimum-risk path is exhibited by the organism, determined by integrating along the path.
View Article and Find Full Text PDFPossible free flights of insects by a single flapping motion were studied. It is well-known that insects utilize vortices generated by flapping, by which they generate larger lift than that evaluated by the ordinary aerodynamic theory. However, the effect of the motion of the center of mass (CM) of the insect on its flight has not been clarified.
View Article and Find Full Text PDF