Publications by authors named "Makoto Hirano"

Sublingual vaccines offer the benefits of inducing mucosal immunity to protect against respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and influenza, while also enabling needle-free self-administration. In a previous study, a sublingual SARS-CoV-2 vaccination was created by combining a recombinafigureCoV-2 spike protein receptor-binding domain antigen with a double strand RNA Poly(I:C) adjuvant. This vaccine was tested on nonhuman primates, Cynomolgus macaques.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, and the cognitive impairments associated with this degenerative disease seriously affect daily life. Nutraceuticals for the prevention or delay of AD are urgently needed. It has been increasingly observed that phycocyanin (PC) exerts neuroprotective effects.

View Article and Find Full Text PDF

Proteinases that digest the extracellular matrix are usually used to harvest cells from culture vessels in a general culture process, which lowers the initial adhesion rate in regenerative medicine. Cell sheet engineering is one of the most important technologies in this field, especially for transplantation, because fabricated cell sheets have rich extracellular matrixes providing strong initial adhesion. Current cell sheet fabrication relies on temperature-responsive polymer-coated dishes.

View Article and Find Full Text PDF

We demonstrate the preferential orders of molecular chaperones glucose-regulated protein 94 (GRP94), binding immunoglobulin protein (BiP), and calreticulin (CRT) in an endoplasmic reticulum (ER) fraction from rat liver using columns conjugated with denatured myoglobin, RNase A, or β-lactoglobulin as client proteins in the presence or absence of ATP. The results showed that BiP, CRT, and GRP94 preferentially contributed myoglobin, RNase A, and β-lactoglobulin, respectively, in the presence of ATP. In the absence of ATP, GRP94 and CRT preferentially recognized misfolded myoglobin (α-helix-rich protein), whereas BiP preferentially recognized misfolded RNase A (α-helix/β-sheet mixed protein) and β-lactoglobulin (β-sheet-rich protein).

View Article and Find Full Text PDF

Deglucosylation and reglucosylation of glycoproteins by glucosidase II and uridine diphosphate-glucose: glycoprotein glucosyltransferase 1 (UGGT1), respectively, are important steps in glycoprotein quality control. Misfolded glycoprotein accumulation is associated with endoplasmic reticulum stress and can lead to protein misfolding diseases such as metabolic syndrome. Here, we analyzed the expression and activities of glucosidase II and UGGT1 in rat models of obesity and obese type 2 diabetes, and phenotypes associated with moderate and severe metabolic syndrome, respectively.

View Article and Find Full Text PDF

Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency.

View Article and Find Full Text PDF

Redox-active ionic liquids (RAILs) require no other additional reagents such as solvent and supporting electrolyte for electrochemical reactions under undiluted condition. Viologen-based RAILs are one of the electrochromic (EC) ionic liquids with sharp color contrast and high chemical stability. An operation of an EC cell requires two electroactive elements, an EC material and a charge compensating material.

View Article and Find Full Text PDF

Cell patterning methods have been previously reported for cell culture. However, these methods use inclusions or devices that are not used in general cell culture and that might affect cell functionality. Here, we report a cell patterning method that can be conducted on a general cell culture dish without any inclusions by employing a resonance vibration of a disk-shaped ultrasonic transducer located under the dish.

View Article and Find Full Text PDF

Background: Peptide: N-glycanase is a deglycosylation enzyme releasing N-glycan from glycoproteins. Although glycan specificity analysis of this enzyme has been reported, recognition requirements for the peptide sequence have not been precisely elucidated.

Objective: In this study, we carried out peptide specificity analysis of several peptide:N-glycanases.

View Article and Find Full Text PDF

Cell detachment is an essential process in adherent cell culture. However, trypsinization, which is the most popular detachment technique used in culture, damages cellular membranes. Reducing cellular membrane damage during detachment should improve the quality of cell culture.

View Article and Find Full Text PDF

Within the endoplasmic reticulum, immature glycoproteins are sorted into secretion and degradation pathways through the sequential trimming of mannose residues from Man GlcNAc to Man GlcNAc by the combined actions of assorted α-1,2-mannosidases. It has been speculated that specific glycoforms encode signals for secretion and degradation. However, it is unclear whether the specific signal glycoforms are produced by random mannosidase action or are produced regioselectively in a sequenced manner by specific α-1,2-mannosidases.

View Article and Find Full Text PDF

Glycoprotein N-linked oligosaccharides in the endoplasmic reticulum function as tags to regulate glycoprotein folding, sorting, secretion and degradation. Since the N-glycan structure of a glycoprotein should reflect the folding state, N-glycan processing may be affected by the aglycone state. In this study, we examined the influence of aglycone structures on N-glycan processing using synthetic substrates.

View Article and Find Full Text PDF

Background: Megalin is a 600-kDa single-spanning transmembrane glycoprotein and functions as an endocytic receptor, distributed not only in the kidney but also in other tissues. Structurally and functionally distinct ligands for megalin have been identified. Megalin has 30 potential N-glycosylation sites in its extracellular domain.

View Article and Find Full Text PDF

The metabolic syndrome including obesity and diabetes mellitus is known to be a major health problem worldwide. A recent study reported that obesity causes endoplasmic reticulum (ER) stress and subsequently leads to insulin resistance and type 2 diabetes. However, little is known about the alterations in the components of the calnexin/calreticulin (CNX/CRT) cycle, which promote glycoprotein folding in obese and diabetic conditions.

View Article and Find Full Text PDF

Calreticulin (CRT) is well known as a lectin-like chaperone that recognizes Glc1Man9GlcNAc2 (G1M9)-glycoproteins in the endoplasmic reticulum (ER). However, whether CRT can directly interact with the aglycone moiety (protein portion) of the glycoprotein remains controversial. To improve our understanding of CRT interactions, structure-defined G1M9-derivatives with different aglycones (-OH, -Gly-NH2, and -Gly-Glu-(t)Bu) were used as CRT ligands, and their interactions with recombinant CRT were analyzed using thermal shift analysis.

View Article and Find Full Text PDF

A systematic series of chitobiose-modified pentapeptides with sequence variations of hydrophobic leucine and hydrophilic serine were synthesized. The resulting glycopeptides were used as molecular probes to elucidate aglycon peptide specificity of the glycoprotein-folding sensor enzyme UGGT. Inhibitory experiments with a synthetic fluorescent glyco-substrate and the glycopeptides revealed that UGGT prefers a serine residue directly linked to C-terminal of the N-glycosylation site in its substrate recognition.

View Article and Find Full Text PDF

Investigating the relative efficiencies of molecular chaperones is important for understanding protein biosynthesis inside a cell. We developed an analytical method for estimating relative chaperone activity under physiological, multi-chaperone conditions using a protein-conjugated column. A chaperone mixture was subjected to chromatography on a column conjugated with denatured ovalbumin, and the elution positions of target chaperones were compared using western blotting to determine the relative affinity of each chaperone for the denatured protein.

View Article and Find Full Text PDF

Compared with in vitro conditions, the intracellular environment is highly crowded with biomolecules; this has numerous effects on protein functions, including enzymatic activity. We examined the effects of macromolecular crowding on glycan processing of N-glycoprotein in the endoplasmic reticulum as a model sequential metabolic pathway. Experiments with synthetic substrates of physiological glycan structure clearly showed that the first half of the pathway (glucose trimming) was accelerated, whereas the second (mannose trimming) was decelerated under molecular crowding conditions.

View Article and Find Full Text PDF

Glycoprotein oligosaccharides function as tags for protein quality control in the endoplasmic reticulum (ER). Since most of proteins are glycosylated and function only after they are properly folded, glycoprotein glycan profiles in the ER might be useful to analyze various cellular status including diseases. Here, we examined whether ER glycan-processing profiles in diabetic rats and osteoporotic mice as models might have different cellular status from those of normal controls.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney.

View Article and Find Full Text PDF

Background And Purpose: The relationship between alcohol consumption and subclinical findings on magnetic resonance imaging (MRI) remains uncertain. We examined the relationship between light to moderate alcohol intake and silent brain infarction (SBI), white matter lesions (WMLs), and cerebral atrophy.

Methods: Cranial MRI was performed on subjects>or=40 years residing in a rural community in Japan (n=385; mean age, 67.

View Article and Find Full Text PDF

Homer proteins, which regulate the signaling pathway of metabotropic glutamate receptors, may contribute to the glutamatergic modulation of dopamine neurons in the basal ganglia. This study examined whether the induction of Homer 1 genes is or not associated with the methamphetamine-induced dopaminergic neurotoxicity in the discrete brain regions of rats. Basal levels of Homer 1a and 1c mRNAs in the forebrain regions were higher than those in the substantia nigra, whereas Homer 1b mRNA levels were higher in the substantia nigra than those in the forebrain regions examined.

View Article and Find Full Text PDF

Jacalin, an alpha-O-glycoside of the disaccharide Thomsen-Friedenreich antigen (galactose beta1-3 N-acetylgalactosamine, T-antigen)-specific lectin from jackfruit seeds, has been shown to induce mitogenic responses and to block infection by HIV-1 in CD4+ T lymphocytes. The molecular mechanism underlying Jacalin-induced T cell activation has not been elucidated completely yet. In the present study, protein tyrosine phosphatase (PTPase) CD45 was isolated from a Jurkat T cell membrane fraction as a major receptor for Jacalin through affinity chromatography and mass spectrometry.

View Article and Find Full Text PDF

Stimulation of dopamine receptors may induce striatal Homer 1a, an immediate-early gene (IEG) that is involved in the molecular mechanism for the signaling pathway of the group I metabotropic glutamate receptors. This study examined the effects of the agonists for dopamine D(1)-like and D(2)-like receptors on gene expression of Homer 1a, in comparison with the IEG c-fos expression, in the discrete brain regions of rats. The D(1)-like agonist SKF38393 (20 mg/kg, s.

View Article and Find Full Text PDF

Purpose: A phase I study of TCF therapy, which consists of paclitaxel (TXL: Taxol) + cisplatin (CDDP) + 5-fluorouracil (5-FU), in advanced gastric cancer patients was performed to determine the recommended dose (RD) for a phase II study by checking the dose-limiting toxicity (DLT) and maximum-tolerated dose (MTD) of 5-FU above the fixed dose of TXL and CDDP.

Methods: The doses of TXL and CDDP were fixed at 80 and 25 mg/m(2), respectively, while that of 5-FU was increased by 100 mg/m(2 )in each cohort from 300 mg/m(2) (level 1) to a maximum of 600 mg/m(2) (level 4). One cycle consisted of administration of these agents once per week for 3 weeks, every 4 weeks.

View Article and Find Full Text PDF