Background: Inhalation of particulate matter, as part of air pollution, is associated with increased morbidity and mortality. Nanoparticles (< 100 nm) are likely candidates for triggering inflammatory responses and activation of coagulation pathways because of their ability to enter lung cells and pass bronchial mucosa. We tested the hypothesis that bronchial segmental instillation of carbon nanoparticles causes inflammation and activation of coagulation pathways in healthy humans in vivo.
View Article and Find Full Text PDFWe tailored the size distribution of Pt nanoparticles (NPs) on graphene nanoplatelets at a given metal loading by using low-temperature atomic layer deposition carried out in a fluidized bed reactor operated at atmospheric pressure. The Pt NPs deposited at low temperature (100 °C) after 10 cycles were more active and stable towards the propene oxidation reaction than their high-temperature counterparts. Crucially, the gap in the catalytic performance was retained even after prolonged periods of time (>24 hours) at reaction temperatures as high as 450 °C.
View Article and Find Full Text PDFA quasi chemical vapor deposition method for the manufacture of well-defined covalent triazine framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilization of two different homogeneous catalysts: (1) an IrCp*-based catalyst for the hydrogen production from formic acid and (2) a Pt-based catalyst for the direct activation of methane via Periana chemistry. The immobilized catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport.
View Article and Find Full Text PDFThe recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO capture and green routes to produce H. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions.
View Article and Find Full Text PDFThe structure and elementary composition of various commercial Fe-based MOFs used as precursors for Fischer-Tropsch synthesis (FTS) catalysts have a large influence on the high-temperature FTS activity and selectivity of the resulting Fe on carbon composites. The selected Fe-MOF topologies (MIL-68, MIL-88A, MIL-100, MIL-101, MIL-127, and Fe-BTC) differ from each other in terms of porosity, surface area, Fe and heteroatom content, crystal density and thermal stability. They are re-engineered towards FTS catalysts by means of simple pyrolysis at 500 °C under a N atmosphere and afterwards characterized in terms of porosity, crystallite phase, bulk and surface Fe content, Fe nanoparticle size and oxidation state.
View Article and Find Full Text PDFBackground: Clinical studies investigating medicinal products need to comply with laws concerning good clinical practice (GCP) and good manufacturing practice (GMP) to guarantee the quality and safety of the product, to protect the health of the participating individual and to assure proper performance of the study. However, there are no specific regulations or guidelines for non-Medicinal Investigational Products (non-MIPs) such as allergens, enriched food supplements, and air pollution components. As a consequence, investigators will avoid clinical research and prefer preclinical models or in vitro testing for e.
View Article and Find Full Text PDFDepletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging.
View Article and Find Full Text PDFA heterogeneous molecular catalyst based on Ir(III) Cp* (Cp*=pentamethylcyclopentadienyl) attached to a covalent triazine framework (CTF) is reported. It catalyses the production of hydrogen from formic acid with initial turnover frequencies (TOFs) up to 27,000 h(-1) and turnover numbers (TONs) of more than one million in continuous operation. The CTF support, with a Brunauer-Emmett-Teller (BET) surface area of 1800 m(2) g(-1), was constructed from an optimal 2:1 ratio of biphenyl and pyridine carbonitrile building blocks.
View Article and Find Full Text PDFWe report on the production of Carbon Nano Networks (CNNs) from dense microemulsions in which catalyst nanoparticles have been synthesized. CNNs are 3D carbon networks, consisting of branches and junctions, and are mesoporous, graphitic, and conductive being suitable as electrode materials.
View Article and Find Full Text PDFThe synthesis of single-atom catalysts and the control of the electronic properties of catalytic sites to arrive at superior catalysts is a major challenge in heterogeneous catalysis. A stable supported single-atom silver catalyst with a controllable electronic state was obtained by anti-Ostwald ripening. An electronic perturbation of the catalytic sites that is induced by a subtle change in the structure of the support has a strong influence on the intrinsic reactivity.
View Article and Find Full Text PDFDesign and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2013
Banish the villains to their own realm: biomass has gained widespread attention as a renewable energy source. However, commercial catalysts used in power plants (co-)fuelled by biomass are deactivated by the alkali-rich flue gas. In contrast, one of two types of active sites in a promising alkali-resistant hollandite catalyst traps alkali-metal ions to free up the catalytically active sites for the reduction of NO by NH(3).
View Article and Find Full Text PDF