Patients with rheumatoid arthritis (RA) show modulated circadian rhythms of inflammatory cytokines and cortisol, which may be associated with a modified expression of clock genes. The expression of major clock genes was previously studied in synovial tissues and fibroblasts of patients with RA and osteoarthritis (OA). We therefore especially aimed to examine the localization of clock genes at the cellular level in synovial tissue.
View Article and Find Full Text PDFObjective: T cell intracytoplasmic antigen 1 (TIA-1) and TIA-1-related protein (TIAR) are involved in posttranscriptional regulation of the expression of tumor necrosis factor alpha (TNFalpha) and other proteins. Given the pivotal role of TNFalpha in chronic inflammatory diseases, this study was undertaken to analyze sera from patients with systemic autoimmune diseases for the presence of autoantibodies to TIA proteins and to investigate the expression of these proteins in inflamed tissue.
Methods: The presence of autoantibodies to TIA proteins in sera from 385 patients with rheumatic diseases and healthy controls was determined by immunoblotting using recombinant antigens.
Objective: To examine whether the endogenous expression of growth differentiation factor 5 (GDF-5) and bone morphogenetic protein 7 (BMP-7) is altered in the cartilage and synovium of human tumor necrosis factor alpha (TNFalpha)-transgenic (hTNFtg) mice with chronic arthritis, and to investigate the response of hTNFtg chondrocytes as well as fibroblast-like synoviocytes (FLS) to these morphogens in vitro.
Methods: Analyses were performed in hTNFtg mice with chronic destructive arthritis and in wild-type (WT) mice as controls. Expression of GDF-5 and BMP-7 in the articular cartilage and synovium was examined by real-time polymerase chain reaction and immunohistochemistry.
A single intradermal injection of the mineral oil pristane in susceptible DA.1F rats induces erosive arthritis closely mimicking rheumatoid arthritis (RA). Pristane-induced arthritis (PIA) is driven by autoreactive T cells but no autoantigen has been identified to date.
View Article and Find Full Text PDFObjective: Activation of p38 MAPK is a key signaling step in chronic inflammation. Inhibition of p38 MAPK is considered to be a promising future strategy to control inflammatory diseases, but studies of compounds to inhibit this kinase have so far been limited to investigation of their side effects. We undertook the present study to investigate which specific molecule, among 4 different isoforms of p38 MAPK (alpha, beta, gamma, and delta), is predominantly expressed and activated in inflammation.
View Article and Find Full Text PDFHuman TNF-alpha transgenic (hTNFtg) mice develop erosive arthritis closely resembling rheumatoid arthritis (RA). To investigate mechanisms leading to pathological autoimmune reactions in RA, we examined hTNFtg animals for the presence of RA-associated autoantibodies including Abs to citrullinated epitopes (anti-cyclic citrullinated peptide), heterogeneous nuclear ribonucleoprotein (hnRNP)-A2 (anti-RA33), and heat shock proteins (hsp) (anti-hsp). Although IgM anti-hsp Abs were detected in 40% of hTNFtg and control mice, IgG anti-hsp Abs were rarely seen, and anti-cyclic citrullinated peptide Abs were not seen at all.
View Article and Find Full Text PDFChronic inflammation is a major trigger of local and systemic bone loss. Disintegration of cell-matrix interaction is a prerequisite for the invasion of inflammatory tissue into bone. CD44 is a type I transmembrane glycoprotein that connects a variety of extracellular matrix proteins to the cell surface.
View Article and Find Full Text PDFObjective: To investigate the efficacy of single and combined blockade of tumor necrosis factor (TNF), interleukin-1 (IL-1), and RANKL pathways on synovial inflammation, bone erosion, and cartilage destruction in a TNF-driven arthritis model.
Methods: Human TNF-transgenic (hTNFtg) mice were treated with anti-TNF (infliximab), IL-1 receptor antagonist (IL-1Ra; anakinra), or osteoprotegerin (OPG; an OPG-Fc fusion protein), either alone or in combinations of 2 agents or all 3 agents. Synovial inflammation, bone erosion, and cartilage damage were evaluated histologically.
The detailed cellular and molecular mechanisms leading to joint destruction in rheumatoid arthritis, a disease driven by proinflammatory cytokines, are still unknown. To address the question of whether osteoclasts play a pivotal role in this process, transgenic mice that express human TNF (hTNFtg) and that develop a severe and destructive arthritis were crossed with osteopetrotic, c-fos-deficient mice (c-fos(-/-)) completely lacking osteoclasts. The resulting mutant mice (c-fos(-/-)hTNFtg) developed a TNF-dependent arthritis in the absence of osteoclasts.
View Article and Find Full Text PDFObjective: To study the effects of osteoclast-targeted therapies, such as osteoprotegerin (OPG) and pamidronate, on joint inflammation and bone destruction using a tumor necrosis factor alpha (TNF alpha)-transgenic mouse model.
Methods: Mice were placed into 5 groups that received either OPG, pamidronate, a combination of both agents, infliximab as a positive control, or phosphate buffered saline as a negative control. Treatment was initiated at the onset of arthritis, continued over 6 weeks, and thereafter, the clinical, radiologic, and histologic outcomes were assessed.