Publications by authors named "Makiko Quint"

We present three-dimensional microshells formed by self-assembly of densely-packed 5 nm gold nanoparticles (AuNPs). Surface functionalization of the AuNPs with custom-designed mesogenic molecules drives the formation of a stable and rigid shell wall, and these unique structures allow encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging the plasmonic response of AuNPs, we can rupture the microshells using optical excitation with ultralow power (<2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 s.

View Article and Find Full Text PDF

We have demonstrated an all-optical technique for reversible in-plane and out-of-plane switching of nematic liquid crystal molecules in few micron thick films. Our method leverages the highly localized electric fields ("hot spots") and plasmonic heating that are generated in the near-field region of densely packed gold nanoparticle layers optically excited on-resonance with the localized surface plasmon absorption. Using polarized microscopy and transmission measurements, we observe this switching from homeotropic to planar over a temperature range starting at room temperature to just below the isotropic transition, and at on-resonance excitation intensity less than 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers in nanotechnology aim to create organized 3D structures by assembling different types of nanoparticles.
  • The paper discusses a novel approach using a liquid crystal phase to produce micron-scale vesicle-like shells made of quantum dots, stabilized by ligand interactions.
  • This method can potentially be applied to various nanoparticles, allowing for controlled shell formation during a transition in the liquid crystalline phase, providing a new technique for 3D nano-assemblies.
View Article and Find Full Text PDF

The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce 'meta-materials' has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small applied magnetic field (<100 mT).

View Article and Find Full Text PDF

Mesogenic ligands have the potential to provide control over the dispersion and stabilization of nanoparticles in liquid crystal (LC) phases. The creation of such hybrid materials is an important goal for the creation of soft tunable photonic devices, such as the LC laser. Herein, we present a comparison of isotropic and mesogenic ligands attached to the surface of CdSe (core-only) and CdSe/ZnS (core/shell) quantum dots (QDs).

View Article and Find Full Text PDF