Publications by authors named "Makiko Iwafuchi"

Despite the litany of pathogenic variants linked to neurodevelopmental disorders (NDD) including autism (ASD) and intellectual disability , our understanding of the underlying mechanisms caused by risk genes remain unclear. Here, we leveraged a human pluripotent stem cell model to uncover the neurodevelopmental consequences of mutations in , a newly implicated risk gene . ZMYND11, known for its tumor suppressor function, encodes a histone-reader that recognizes sites of transcriptional elongation and acts as a co-repressor .

View Article and Find Full Text PDF

Transcription factor (TF) gene knockout or knockdown experiments provide comprehensive downstream effects on gene regulation. However, distinguishing primary direct effects from secondary effects remains challenging. To assess the direct effect of TF binding events, we present a protocol for establishing a doxycycline (Dox)-inducible CRISPRd system in human pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

Inducible loss-of-function strategies are crucial for understanding gene function. However, creating inducible, multiple-gene knockout models is challenging and time-consuming. Here, we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation.

View Article and Find Full Text PDF

Genomic DNA wraps around core histones to form nucleosomes, which provides steric constraints on how transcription factors (TFs) can interact with gene regulatory sequences. It is increasingly apparent that well-positioned, accessible nucleosomes are an inherent feature of active enhancers and can facilitate cooperative TF binding, referred to as nucleosome-mediated cooperativity. Thus, profiling chromatin and nucleosome properties (accessibility, positioning, and occupancy) on the genome is crucial to understand cell-type-specific gene regulation.

View Article and Find Full Text PDF

WNT/β-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How β-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors.

View Article and Find Full Text PDF

Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon.

View Article and Find Full Text PDF

Estradiol plays an essential role in sexual differentiation of the rodent hypothalamus. Endocrine disruptors with estrogenic activity such as bisphenol A (BPA) are reported to disturb sexual differentiation of the hypothalamus. The purpose of the present study was to examine in vitro effects of BPA on developing hypothalamic neurons by focusing on a presynaptic protein synapsin I and microtubule-associated protein 2 (MAP2).

View Article and Find Full Text PDF

Estradiol (17beta-estradiol, E(2)) plays an essential role in sexual differentiation of the rodent brain. The purpose of the present study was to investigate the effects of E(2) on developing hypothalamic neurons by focusing on a presynaptic protein, synapsin I. We applied E(2) to cultured hypothalamic cells removed from fetal rats and investigated resultant effects upon synapsin I.

View Article and Find Full Text PDF

In higher vertebrates, the expression of Sox2, a group B1 Sox gene, is the hallmark of neural primordial cell state during the developmental processes from embryo to adult. Sox2 is regulated by the combined action of many enhancers with distinct spatio-temporal specificities. DNA sequences for these enhancers are conserved in a wide range of vertebrate species, corresponding to a majority of highly conserved non-coding sequences surrounding the Sox2 gene, corroborating the notion that the conservation of non-coding sequences mirrors their functional importance.

View Article and Find Full Text PDF