Publications by authors named "Makiko Chono"

Different methodologies have been applied for the selection of preharvest sprouting resistance in cereal breeding programs. We describe here a series of methods used in practical wheat breeding programs in Japan, including phenotyping based on germination score after artificial rain treatments and genotyping using DNA markers. These methods can be modified and applied to breeding programs in which preharvest sprouting is a problem during cereal cultivation.

View Article and Find Full Text PDF
Article Synopsis
  • The timing of wheat heading is influenced by environmental factors, with key genes identified for vernalization and photoperiod sensitivity.
  • A study examined the effects of different genetic alleles on heading time across various locations in Japan, using a diverse set of wheat varieties.
  • Results indicated that certain alleles are associated with earlier or later heading depending on specific environmental conditions, highlighting the importance of these genetic factors in wheat breeding.
View Article and Find Full Text PDF

In red wheat, reddish-brown pigments accumulate in testa of mature seeds. Half-cut wheat seeds were immersed in p-dimethylaminocinnamaldehyde (DMACA) reagent that stains flavanol structures blue. Testa of 10-40 days after flowering (DAF) in red wheat ("Norin 61" and "Satonosora") seeds were stained blue and the reagent color changed to blue with 10-25 DAF seeds.

View Article and Find Full Text PDF

In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP.

View Article and Find Full Text PDF

The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.

View Article and Find Full Text PDF

Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism.

View Article and Find Full Text PDF

The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype.

View Article and Find Full Text PDF

Wheat (Triticum aestivum) and rice (Oryza sativa) are two of the most agriculturally important cereal crop plants. Rice is known to produce numerous diterpenoid natural products that serve as phytoalexins and/or allelochemicals. Specifically, these are labdane-related diterpenoids, derived from a characteristic labdadienyl/copalyl diphosphate (CPP), whose biosynthetic relationship to gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice the (OsKSLs).

View Article and Find Full Text PDF

Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals--specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g.

View Article and Find Full Text PDF

In many temperate woody species, dormancy is induced by short photoperiods. Earlier studies have shown that the photoreceptor phytochrome A (phyA) promotes growth. Specifically, Populus plants that over-express the oat PHYA gene (oatPHYAox) show daylength-independent growth and do not become dormant.

View Article and Find Full Text PDF

To investigate whether the regulation of abscisic acid (ABA) content was related to germinability during grain development, two cDNAs for 9-cis-epoxycarotenoid dioxygenase (HvNCED1 and HvNCED2) and one cDNA for ABA 8'-hydroxylase (HvCYP707A1), which are enzymes thought to catalyse key regulatory steps in ABA biosynthesis and catabolism, respectively, were cloned from barley (Hordeum vulgare L.). Expression and ABA-quantification analysis in embryo revealed that HvNCED2 is responsible for a significant increase in ABA levels during the early to middle stages of grain development, and HvCYP707A1 is responsible for a rapid decrease in ABA level thereafter.

View Article and Find Full Text PDF

Rice anthers contain high concentrations of gibberellins A(4) and A(7). To understand their physiological roles, we examined the site of their biosynthesis by analyzing the expression pattern of a gene (OsCPS) encoding coparyl diphosphate synthase in developing rice flowers. Expression was apparent in the anthers 1-2 days before flowering, and CPS mRNA accumulated in the maturing pollen.

View Article and Find Full Text PDF

To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen.

View Article and Find Full Text PDF

Brassinosteroids (BRs) play important roles throughout plant growth and development. Despite the importance of clarifying the mechanism of BR-related growth regulation in cereal crops, BR-related cereal mutants have been identified only in rice (Oryza sativa). We previously found that semidwarf barley (Hordeum vulgare) accessions carrying the "uzu" gene, called "uzu" barley in Japan, are non-responding for brassinolide (BL).

View Article and Find Full Text PDF

A sensitive method to examine the brassinolide (BL) response of barley (Hordeum vulgare L.) using dark-grown leaf segments was established based on the known method for wheat. BL responses of 53 dwarf isogenic lines of barley were examined, and two lines were found having a uzu gene that doesn't respond significantly.

View Article and Find Full Text PDF

Fluorescence differential display was used to isolate the gibberellin (GA)-responsive gene, CsAGP1, from cucumber (Cucumis sativus) hypocotyls. A sequence analysis of CsAGP1 indicated that the gene putatively encodes a "classical" arabinogalactan protein (AGP) in cucumber. Transgenic tobacco (Nicotiana tabacum) plants overexpressing CsAGP1 under the control of the cauliflower mosaic virus 35S promoter produced a Y(betaGlc)(3)-reactive proteoglycan in addition to AGPs present in wild-type tobacco plants.

View Article and Find Full Text PDF