The hemangioblast is a progenitor cell with the capacity to give rise to both hematopoietic and endothelial progenitors. Currently, the regulatory mechanisms underlying hemangioblast formation are being elucidated, whereas those controllers for the selection of hematopoietic or endothelial fates still remain a mystery. To answer these questions, we screened for zebrafish mutants that have defects in the hemangioblast expression of Gata1, which is never expressed in endothelial progenitors.
View Article and Find Full Text PDFTranscription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'.
View Article and Find Full Text PDFTranscription factor GATA2 is expressed in numerous mammalian tissues, including neural, hematopoietic, cardiovascular and urogenital systems, and yet it plays important roles in the regulation of tissue-restricted gene expression. The Gata2 gene itself is also under stringent tissue-specific control and multiple cis-regulatory domains have been identified in the Gata2 locus. In this study we sought out and then examined in detail the domains that regulate Gata2 in the midbrain.
View Article and Find Full Text PDFTranscription factor GATA-2 is essential for definitive hematopoiesis, which developmentally emerges from the para-aortic splanchnopleura (P-Sp). The expression of a green fluorescent protein (GFP) reporter placed under the control of a 3.1-kbp Gata2 gene regulatory domain 5' to the distal first exon (IS) mirrored that of the endogenous Gata2 gene within the P-Sp and yolk sac (YS) blood islands of embryonic day (E) 9.
View Article and Find Full Text PDF