Mol Cell Neurosci
September 2013
The neuronal network is tightly regulated by a large variety of locally connected GABAergic neurons. Neuregulin1 (Nrg1) and its receptor ErbB4 are master regulators in the morphological and functional development of excitatory synapses in GABAergic neurons. We previously showed that the immunoglobulin-like cell adhesion molecule, nectin-like molecule-2 (Necl-2)/CADM1, interacts with the ErbB3 and ErbB4 receptors, and that the interaction of Necl-2 with ErbB3 inhibits the Nrg1-induced ErbB3/ErbB2 signaling in epithelial cells.
View Article and Find Full Text PDFLoss of synapses is associated with cognitive impairment in Alzheimer's disease (AD). However, the molecular mechanism underlying this synaptic impairment is not well understood. EphA4 is a substrate of γ-secretase, and the γ-secretase-cleaved EphA4 intracellular domain (EICD) is known to enhance the formation of dendritic spines via activation of the Rac signaling pathway.
View Article and Find Full Text PDFThe planar cell polarity (PCP) protein, Prickle (Pk), is conserved in invertebrates and vertebrates, and regulates cellular morphogenesis and movement. Vertebrate Pk consists of at least two family members, Pk1 and Pk2, both of which are expressed in the brain; however, their localization and function at synapses remain elusive. Here, we show that Pk2 is expressed mainly in the adult brain and is tightly associated with the postsynaptic density (PSD) fraction obtained by subcellular fractionation.
View Article and Find Full Text PDFAlzheimer's disease is an age-dependent neurodegenerative disorder that is characterized by a progressive decline in cognitive function. gamma-secretase dysfunction is evident in many cases of early onset familial Alzheimer's disease. However, the mechanism by which gamma-secretase dysfunction results in memory loss and neurodegeneration is not fully understood.
View Article and Find Full Text PDFCAST and ELKS are major components of the presynaptic active zones of neurons in the central nervous system, but it remains elusive whether CAST and ELKS are also components of synapses in the peripheral nervous system. Here, we have attempted to examine their expression and localization at the synapses of neuromuscular junctions. Immunoreactivity for ELKS is partly colocalized with that for the major neuromuscular junctions marker alpha-bungarotoxin, which binds to acetylcholine receptors.
View Article and Find Full Text PDFThe active zone protein CAST binds directly to the other active zone proteins RIM, Bassoon and Piccolo, and it has been suggested that these protein-protein interactions play an important role in neurotransmitter release. To further elucidate the molecular mechanism, we attempted to examine the function of CAST using PC12 cells as a model system. Although PC12 cells do not express CAST, they do express ELKS, a protein structurally related to CAST.
View Article and Find Full Text PDFA serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain.
View Article and Find Full Text PDFCAST is a novel cytomatrix at the active zone (CAZ)-associated protein. In conventional brain synapses, CAST forms a large molecular complex with other CAZ proteins, including RIM, Munc13-1, Bassoon, and Piccolo. Here we investigated the distribution of CAST and its structurally related protein, ELKS, in mouse retina.
View Article and Find Full Text PDFSynaptic vesicle release occurs at a specialized membrane domain known as the presynaptic active zone (AZ). Several membrane proteins are involved in the vesicle release processes such as docking, priming, and exocytotic fusion. Cytomatrix at the active zone (CAZ) proteins are structural components of the AZ and are highly concentrated in it.
View Article and Find Full Text PDFNectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules and comprise a family of four members. At the mossy fiber terminals of hippocampus, nectin-1 and nectin-3 localize at the presynaptic and postsynaptic sides of synaptic junctions, respectively, and their trans-interactions play a role in formation of synapses in cooperation with N-cadherin. Nectins are associated with the actin cytoskeleton through afadin, a nectin- and actin-filament-binding protein.
View Article and Find Full Text PDFBackground: Two types of intercellular junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAs), are observed at the synapses between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the hippocampus. SJs are associated with active zones and postsynaptic densities (PSDs) where neurotransmission occurs, whereas PAs are not associated with either of them. We have found that the nectin-afadin unit as well as the N-cadherin-catenin unit localizes at the PAs and that both the units cooperatively organize the PAs.
View Article and Find Full Text PDFWe have recently isolated a novel cytomatrix at the active zone (CAZ)-associated protein, CAST, and found it directly binds another CAZ protein RIM1 and indirectly binds Munc13-1 through RIM1; RIM1 and Munc13-1 directly bind to each other and are implicated in priming of synaptic vesicles. Here, we show that all the CAZ proteins thus far known form a large molecular complex in the brain, including CAST, RIM1, Munc13-1, Bassoon, and Piccolo. RIM1 and Bassoon directly bind to the COOH terminus and central region of CAST, respectively, forming a ternary complex.
View Article and Find Full Text PDFThe cytomatrix at the active zone (CAZ) is thought to define the site of Ca2+-dependent exocytosis of neurotransmitters. We have recently identified a novel CAZ protein from rat brain which we have named CAST (CAZ-associated structural protein). CAST forms a large molecular complex with other CAZ proteins such as Bassoon, RIM1 and Munc13-1, at least through direct binding to RIM1.
View Article and Find Full Text PDFBackground: Rab3A, a member of the Rab3 small G protein family, regulates Ca2+-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP) and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP).
View Article and Find Full Text PDFImprovement of in-gel digestion efficiency is highly desirable for one- or two-dimensional gel electrophoretic separation and mass spectrometric (MS) analysis in proteomics, because the resultant increases in sequence coverage and MS signal intensity lead to higher confidence in protein identification. Here an optimized in-gel digestion system, in combination with thin-gel separation and negative staining in a high-throughput format using 96-well plates, is described. The combination of negative staining and protein separation on a 0.
View Article and Find Full Text PDFNectin and afadin constitute a novel intercellular adhesion system that organizes adherens junctions in cooperation with the cadherin-catenin system in epithelial cells. Nectin is a Ca(2+)-independent immunoglobulin-like adhesion molecule and afadin is an actin filament (F-actin)-binding protein that connects nectin to the actin cytoskeleton. At the puncta adhaerentia junctions (PAs) between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of the adult mouse hippocampus, the nectin-afadin system also colocalizes with the cadherin-catenin system and has a role in the formation of synapses.
View Article and Find Full Text PDFThe cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitter. We have identified here a novel CAZ protein of approximately 120 kD from rat brain and named it CAST (CAZ-associated structural protein). CAST had no transmembrane segment, but had four coiled-coil domains and a putative COOH-terminal consensus motif for binding to PDZ domains.
View Article and Find Full Text PDFBackground: The postsynaptic density (PSD) at synapses is a specialized submembranous structure where neurotransmitter receptors are linked to cytoskeleton and signalling molecules. Activity-dependent dynamic change in the components of the PSD is a mechanism of synaptic plasticity. Identification of the PSD proteins and examination of their modulations dependent on synaptic activity will be valuable for an understanding of the molecular basis of learning and memory.
View Article and Find Full Text PDFRab3A, a member of the Rab3 small G protein family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP).
View Article and Find Full Text PDF