Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating.
View Article and Find Full Text PDFPeripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations.
View Article and Find Full Text PDFThe ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of and under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate) and chitosan are among the most widely used polymers for biomedical applications due to their biocompatibility, renewability and low toxicity. The creation of composite materials based on biopolymers belonging to different classes makes it possible to overcome the disadvantages of each of the components and to obtain a material with specific properties. Solving this problem is associated with difficulties in the selection of conditions and solvents for obtaining the composite material.
View Article and Find Full Text PDFScaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique.
View Article and Find Full Text PDFPolymers (Basel)
June 2022
Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHB--HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films-water-assisted self-assembly ("breath figure") and spin-coating techniques.
View Article and Find Full Text PDFHighly porous composite poly(vinyl alcohol) (PVA) cryogels loaded with the poly(3-hydroxybutyrate) (PHB) microbeads containing the drug, simvastatin (SVN), were prepared via cryogenic processing (freezing-storing frozen-defrosting) of the beads' suspensions in aqueous PVA solution. The rigidity of the resultant composite cryogels increased with increasing the filler content. Optical microscopy of the thin section of such gel matrices revealed macro-porous morphology of both continuous (PVA cryogels) and discrete (PHB-microbeads) phases.
View Article and Find Full Text PDFThis study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate.
View Article and Find Full Text PDFWe studied the effect of porous composite scaffolds based on poly(3-hydroxybutyrate) (PHB) loaded with simvastatin on the growth and differentiation of mesenchymal stem cells. The scaffolds have a suitable microstructure (porosity and pore size) and physicochemical properties to support the growth of mesenchymal stem cells. Scaffold loading with simvastatin suppressed cell growth and increased alkaline phosphatase activity, which can attest to their osteoinductive properties.
View Article and Find Full Text PDFOver the past century there was a significant development and extensive application of biodegradable and biocompatible polymers for their biomedical applications. This research investigates the dynamic change in properties of biodegradable polymers: poly(3-hydroxybutyrate (PHB), poly-l-lactide (PLA), and their 50:50 blend (PHB/PLA)) during their hydrolytic non-enzymatic (in phosphate buffered saline (PBS), at pH = 7.4, 37 °C) and enzymatic degradation (in PBS supplemented with 0.
View Article and Find Full Text PDFA critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing.
View Article and Find Full Text PDFThe hydrolytic and enzymatic degradation of polymer films of poly(3-hydroxybutyrate) (PHB) of different molecular mass and its copolymers with 3-hydroxyvalerate (PHBV) of different 3-hydroxyvalerate (3-HV) content and molecular mass, 3-hydroxy-4-methylvalerate (PHB4MV), and polyethylene glycol (PHBV-PEG) produced by the by controlled biosynthesis technique were studied under in vitro model conditions. The changes in the physicochemical properties of the polymers during their in vitro degradation in the pancreatic lipase solution and in phosphate-buffered saline for a long time (183 days) were investigated using different analytical techniques. A mathematical model was used to analyze the kinetics of hydrolytic degradation of poly(3-hydroxyaklannoate)s by not autocatalytic and autocatalytic hydrolysis mechanisms.
View Article and Find Full Text PDFDevelopment of biocompatible 3D scaffolds is one of the most important challenges in tissue engineering. In this study, we developed polymer scaffolds of different design and microstructure to study cell growth in them. To obtain scaffolds of various microstructure, e.
View Article and Find Full Text PDFWe studied the possibility of long-term culturing of mouse mesenchymal stem cells on a porous scaffold made of biocompatible polymer poly-3-hydroxybutyrate. The cells remained viable for at least 2 months and passed more than 65 population doublings in culture. Culturing on the scaffold did not change surface phenotype of cells.
View Article and Find Full Text PDFBackground: The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering.
View Article and Find Full Text PDFIntegrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val(386) and Thr(387) were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.
View Article and Find Full Text PDFPrikl Biokhim Mikrobiol
February 2013
Microspheres were obtained on the basis of poly(3-oxibutyrate) (POB) with the inclusion of the Chlorambucil and Etoposide cytostatic drugs in a polymer matrix, and the morphology, kinetics of drug release from microspheres, and the interaction between microspheres and tumor cells in vitro were studied. Data on the kinetics of drug release suggests that a prolonged release occurs by drug diffusion from the polymer matrix at the initial stage and at the expense of hydrolytic degradation of the polymer at a later stage. A study of the biocompatibility and biological activity of biopolymeric microspheres showed that chlorambucil operates actively and strongly inhibits the growth of cultured cells for a short time (24 h).
View Article and Find Full Text PDFA biodegradable polymer of bacterial origin, poly(3-hydroxybutyrate) (PHB), is intensively studied as biomaterial for tissue engineering. However, factors determining its biocompatibility still require better understanding. To analyze the PHB films biocompatibility, the polymer material was modified by hydrophilic polymer, poly(ethylene glycol) 300 (PEG).
View Article and Find Full Text PDFWe have identified the adenine nucleotide translocator (ANT) isoforms ANT1 and ANT2 that are present in the plasma membrane of mouse cerebellar neurons as novel binding partners of the cell adhesion molecule L1. The direct interaction between ANT and L1 is mediated by sites within the fibronectin type III domains of L1 and the first and third extracellular loops of the ANT proteins. We also show that L1 interacts with the ANT binding partner matrix metalloprotease 14 (MMP14) and that the ANT proteins bind directly to the L1 interaction partner glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
View Article and Find Full Text PDFDevelopment of systems of medicines with sustained action on the basis of biodegradable polymers is a promising trend in modem pharmacology. Polyhydroxyalkanoates (POA) attract increasing attention due to their biodegradability and high biocompatibility, which make them suitable for development of novel drug dosage forms. We obtained microspheres on the basis of poly(3-hydroxybutyrate) (PHB) loaded with the antitumor drug paclitaxel.
View Article and Find Full Text PDFPolysialic acid (PSA) is a large and highly negatively charged glycan that plays crucial roles in nervous system development and function in the adult. It has been suggested to facilitate cell migration, neurite outgrowth, and synaptic plasticity because its hydration volume could enhance flexibility of cell interactions. Evidence for receptors of PSA has so far been elusive.
View Article and Find Full Text PDFThe ability of Azotobacter chroococcum strain 7B, producer of polyhydroxybutyrate (PHB), to synthesize its copolymer poly-3-hydroxybutyrate-3-hydroxyvalerate (PHB-HV) was studied. It was demonstrated, for the first time, that A. chroococcum strain 7B was able to synthesize PHB-HV with various molar rates of HV in the polymer chain when cultivated on medium with sucrose and carboxylic acids as precursors of HV elements in the PHB chain, namely, valeric (13.
View Article and Find Full Text PDFThe aim of this study was to evaluate and to compare of long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and PHB/polylactic acid blend. The total weight loss and the change of average viscosity molecular weight were used as an index of biodegradation degree. The rate of biodegradation was analyzed in vitro in presence oflipase and in vivo when the films were implanted in animal tissues.
View Article and Find Full Text PDFWe have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry.
View Article and Find Full Text PDFIt has been shown that poly-3-hydroxybutyrate (PHB) of predetermined molecular weight can be obtained by varying the growth conditions of the producer strain, Azotobacter chroococcum 7B: pH, temperature, aeration, presence of sodium acetate as an additional carbon source, or growth on crude complex carbon sources (molasses, vinasse, or starch). High-molecular-weight polymer can be obtained at pH 7.0, optimal for the culture (1485 kDa), temperature 30-37 degrees C (1600-1450 kDa, respectively), and low aeration (2215 kDa).
View Article and Find Full Text PDF