Objectives : GTF2I and GTF2IRD1 genes located in Williams-Beuren syndrome (WBS) critical region encode TFII-I family transcription factors. The aim of this study was to map genomic sites bound by these proteins across promoter regions of developmental regulators associated with craniofacial development. Design : Chromatin was isolated from human neural crest progenitor cells and the DNA-binding profile was generated using the human RefSeq tiling promoter ChIP-chip arrays.
View Article and Find Full Text PDFGTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression.
View Article and Find Full Text PDFTFII-I transcription factors play an essential role during early vertebrate embryogenesis. Genome-wide mapping studies by ChIP-seq and ChIP-chip revealed that TFII-I primes multiple genomic loci in mouse embryonic stem cells and embryonic tissues. Moreover, many TFII-I-bound regions co-localize with H3K4me3/K27me3 bivalent chromatin within the promoters of lineage-specific genes.
View Article and Find Full Text PDFActivation of PI3K/Akt signaling is sufficient to maintain the pluripotency of mouse embryonic stem cells (mESC) and results in down-regulation of Gtf2i and Gtf2ird1 encoding TFII-I family transcription factors. To investigate how these genes might be involved in the process of embryonic stem cell differentiation, we performed expression microarray profiling of mESC upon inhibition of PI3K by LY294002. This analysis revealed significant alterations in expression of genes for specific subsets of chromatin-modifying enzymes.
View Article and Find Full Text PDFCleft Palate Craniofac J
January 2011
Objective: The aim of this study is to identify gene targets of TFII-I transcription factors involved in craniofacial development.
Design: Recent findings in individuals with Williams-Beuren syndrome who show facial dysmorphism and cognitive defects have pointed to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for these clinical features. However, TFII-I proteins are multifunctional transcriptional factors regulating a number of genes during development, and how their haploinsufficiency leads to the Williams-Beuren syndrome phenotype is currently unknown.
Biochem Biophys Res Commun
September 2009
Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos.
View Article and Find Full Text PDFThe possibility of xenotransplantation of human fetal chondroblasts was studied. Filling of the rat articular cartilage defect with a tissue-engineering construction based on primary culture of human fetal chondroblasts and chitosan gel caused no immune rejection over 60 days and provided the formation of organotypical regenerate due to proliferation and differentiation of donor fetal chondroblasts and their integration in the recipient cartilage tissue.
View Article and Find Full Text PDFTFII-I proteins are ubiquitously expressed transcriptional factors involved in both basal transcription and signal transduction activation or repression. TFII-I proteins are detected as early as at two-cell stage and exhibit distinct and dynamic expression patterns in developing embryos as well as mark regional variation in the adult mouse brain. Analysis of atypical small and rare chromosomal deletions at 7q11.
View Article and Find Full Text PDFGTF2I and GTF2IRD1 encoding the multifunctional transcription factors TFII-I and BEN are clustered at the 7q11.23 region hemizygously deleted in Williams-Beuren syndrome (WBS), a complex multisystemic neurodevelopmental disorder. Although the biochemical properties of TFII-I family transcription factors have been studied in depth, little is known about the specialized contributions of these factors in pathways required for proper embryonic development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2008
GTF2I and GTF2IRD1 encode members of the TFII-I transcription factor family and are prime candidates in the Williams syndrome, a complex neurodevelopmental disorder. Our previous expression microarray studies implicated TFII-I proteins in the regulation of a number of genes critical in various aspects of cell physiology. Here, we combined bioinformatics and microarray results to identify TFII-I downstream targets in the vertebrate genome.
View Article and Find Full Text PDFLim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1.
View Article and Find Full Text PDFThe hnRNP A/B type proteins are abundant nuclear factors that bind to Pol II transcripts and are involved in numerous RNA-related activities. To date most data on the hnRNP A/B family have been obtained with recombinant proteins and cell cultures. Further characterization can result from an examination of the impact of various modifications in intact functional loci; however, such characterization is hampered by the presence of numerous and widely dispersed hnRNP A/B-related sequences in the mammalian genome.
View Article and Find Full Text PDFWilliams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2003
This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development.
View Article and Find Full Text PDFRNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins.
View Article and Find Full Text PDFThe poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions.
View Article and Find Full Text PDFWe have identified two novel human genes encoding proteins with a high level of sequence identity to two previously characterized RNA-binding proteins, alphaCP-1 and alphaCP-2. Both of these novel genes, alphaCP-3 and alphaCP-4, are predicted to encode proteins with triplicated KH domains. The number and organization of the KH domains, their sequences, and the sequences of the contiguous regions are conserved among all four alphaCP proteins.
View Article and Find Full Text PDFGene families normally expand by segmental genomic duplication and subsequent sequence divergence. Although copies of partially or fully processed mRNA transcripts are occasionally retrotransposed into the genome, they are usually nonfunctional ("processed pseudogenes"). The two major cytoplasmic poly(C)-binding proteins in mammalian cells, alphaCP-1 and alphaCP-2, are implicated in a spectrum of post-transcriptional controls.
View Article and Find Full Text PDFGlobin mRNAs accumulate to 95% of total cellular mRNA during terminal erythroid differentiation, reflecting their extraordinary stability. The stability of human alpha-globin mRNA is paralleled by formation of a sequence-specific RNA-protein (RNP) complex at a pyrimidine-rich site within its 3' untranslated region (3'UTR), the alpha-complex. The proteins of the alpha-complex are widely expressed.
View Article and Find Full Text PDFThe developmental stage-specific expression of human globin proteins is characterized by a switch from the coexpression of zeta- and alpha-globin in the embryonic yolk sac to exclusive expression of alpha-globin during fetal and adult life. Recent studies with transgenic mice demonstrate that in addition to transcriptional control elements, full developmental silencing of the human zeta-globin gene requires elements encoded within the transcribed region. In the current work, we establish that these latter elements operate posttranscriptionally by reducing the relative stability of zeta-globin mRNA.
View Article and Find Full Text PDF2,4-D in plants very rapidly undergoes various transformations and its predominant metabolic pathways and rates vary with different plant species. In bean and soybean plants major 2,4-D metabolites are 4-O-beta-D-glucosides of 4-hydroxy-2,5-dichloro- and 4-hydroxy-2,3-dichloro-phenoxy-acetic acids; in addition, considerable amounts of N-(2,4-dichlorophenoxyacetyl)-L-aspartic and N-(2,4-dichlorophenoxyacetyl)-L-glutamic acids are accumulating in them. Among 2,4-D metabolites in cereals there prevailed 1-O-(2,4-dichlorophenoxyacetyl)-beta-D-glucose while the glycoside of 2,4-dichlorophenol prevailed in strawberry plants.
View Article and Find Full Text PDF