The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo.
View Article and Find Full Text PDFMethods for deriving the ureteric epithelium (UE) in vitro could improve understanding of kidney development and patterning. In this issue of Cell Stem Cell, Howden et al. (2021) identified transcriptionally distinct cell populations in human induced pluripotent stem cell (iPSC)-derived distal nephron (DN) epithelia that were inducible to UE phenotype within kidney organoids.
View Article and Find Full Text PDF