Publications by authors named "Makenna C Knas"

Ischemic heart failure continues to be a highly prevalent disease among westernized countries and there is great interest in understanding the mechanisms preventing or exacerbating disease progression. The literature suggests an important role for the activation of interleukin-13 or interleukin-4 signaling in improving ischemic heart failure outcomes after myocardial infarction in mice. Dupilumab, a neutralizing antibody that inhibits the shared IL13/IL4 receptor subunit IL4Rα, is widely used for conditions such as ectopic dermatitis in humans.

View Article and Find Full Text PDF

There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts.

View Article and Find Full Text PDF

Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated.

View Article and Find Full Text PDF

Introduction: While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored.

Methods: We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone ( ; ) or Yap and Wwtr1 ( ; ; ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling.

Results: Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening.

View Article and Find Full Text PDF