Surfactants such as dioctadecyldimethylammonium bromide (DODAB) form semi-permanent coatings that effectively prevent adsorption of cationic proteins onto the fused silica capillary in capillary electrophoresis (CE). The bilayer coating is generated by flushing the capillary with a 0.1 mM surfactant solution.
View Article and Find Full Text PDFThe cationic surfactants didodecyldimethylammonium bromide (DDAB) and dioctadecyldimethyl-ammonium bromide (DODAB) have previously been shown to form semi-permanent coatings that effectively prevent adsorption of cationic proteins in fused silica capillaries with inner diameters of 25-75 µm. This paper investigates the impact that narrower capillary diameters (≤25 µm) have on the stability of surfactant bilayer coatings and the efficiency of separations of model cationic proteins and neurotransmitters. Using a DODAB-coated 5 µm i.
View Article and Find Full Text PDFPhospholipid bilayer coatings can prevent adsorption of cationic proteins on the surface of fused silica capillaries used in capillary electrophoresis. However, the performance of such bilayer coatings is strongly dependent on solution conditions. The factors affecting the rate of formation of phospholipid bilayer coatings were investigated using the double-chained zwitterionic 1,2-dimyristoyl-sn-glycero-phosphocholine (DMPC, C(14)) as a model phospholipid.
View Article and Find Full Text PDFAdsorption of proteins, particularly basic proteins onto fused silica capillaries severely degrades capillary electrophoretic performance. This review provides a synopsis of the fundamentals underlying protein adsorption and its impact on CE performance. The efficacy of small molecule background electrolyte additives, surfactants, physically adsorbed polymers (dynamic and static), and successive multiple ionic-polymer layer coatings are evaluated using a number of performance metrics.
View Article and Find Full Text PDF