The auxin-inducible degron (AID) system is a broadly used tool for spatiotemporal and reversible control of protein depletion in multiple experimental model systems. AID2 technology relies on a synthetic ligand, 5-phenyl-indole-3-acetic acid (5-Ph-IAA), for improved specificity and efficiency of protein degradation. Here, we provide a protocol for cost-effective 5-Ph-IAA synthesis utilizing the Suzuki coupling of 5-chloroindole and phenylboronic acid.
View Article and Find Full Text PDFThis Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination.
View Article and Find Full Text PDFPhotoredox catalysis has provided many approaches to C(sp)-H functionalization that enable selective oxidation and C(sp)-C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp)-H functionalization strategy with nucleophiles.
View Article and Find Full Text PDFMethylation of organohalides represents a valuable transformation, but typically requires harsh reaction conditions or reagents. We report a radical approach for the methylation of (hetero)aryl chlorides using nickel/photoredox catalysis wherein trimethyl orthoformate, a common laboratory solvent, serves as a methyl source. This method permits methylation of (hetero)aryl chlorides and acyl chlorides at an early and late stage with broad functional group compatibility.
View Article and Find Full Text PDFSpongistatin 1 is among the most potent anti-proliferative agents ever discovered rendering it an attractive candidate for development as a payload for antibody-drug conjugates and other targeted delivery approaches. Unfortunately, it is unavailable from natural sources and its size and complex stereostructure render chemical synthesis highly time- and resource-intensive. As a result, the design and synthesis of more acid-stable and linker functional group-equipped analogs that retain the low picomolar potency of the parent natural product requires more efficient and step-economical synthetic access.
View Article and Find Full Text PDFA direct, mild, and general method for the enantioselective allylsilylation of aldehydes with allyl chlorides is reported. The reactions are effectively catalyzed by 5 mol % of n-BuNBr, and this rate acceleration allows the use of complex allyl donors in fragment-coupling reactions and of electron-deficient allyl donors. The results are (1) significant progress toward a "universal" asymmetric aldehyde allylation reaction that can reliably and highly stereoselectively couple any allyl chloride_aldehyde combination and (2) the discovery of a novel mode of nucleophilic catalysis for aldehyde allylsilylation reactions.
View Article and Find Full Text PDF