The Rurikids were the reigning house of Rus', its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus', the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?-1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221-1263).
View Article and Find Full Text PDFIntroduction: The concept of Digital Twins (DTs) translated to drug development and clinical trials describes virtual representations of systems of various complexities, ranging from individual cells to entire humans, and enables in silico simulations and experiments. DTs increase the efficiency of drug discovery and development by digitalizing processes associated with high economic, ethical, or social burden. The impact is multifaceted: DT models sharpen disease understanding, support biomarker discovery and accelerate drug development, thus advancing precision medicine.
View Article and Find Full Text PDFThe Volga-Oka interfluve in northwestern Russia has an intriguing history of population influx and language shift during the Common Era. Today, most inhabitants of the region speak Russian, but until medieval times, northwestern Russia was inhabited by Uralic-speaking peoples. A gradual shift to Slavic languages started in the second half of the first millennium with the expansion of Slavic tribes, which led to the foundation of the Kievan Rus' state in the late 9 century CE.
View Article and Find Full Text PDFThe spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm.
View Article and Find Full Text PDFWe report on the development of a very simple and inexpensive sensor device based on an inductance coil connected to a high-frequency electric field generator. The working principle of this sensor is as follows: liquid sample in a plastic tube is placed inside the inductance coil as its core and this core changes the properties of high-frequency electric current passing through the coil; these changes depend on sample conductivity, dielectric constant, magnetic properties, and capacitance. The electric signal registered after the coil represents a kind of a spectrum that can be effectively treated with chemometric tools.
View Article and Find Full Text PDFWhile luminescent solar concentrators (LSCs) have been researched for several decades, there is still a lack of commercially available systems, mostly due to scalability, performance, aesthetics, or some combination of these challenges. These obstacles can be overcome by the systematic optimization of a laminated glass LSC design, demonstrated herein. In particular, we first show that it is possible to improve optical and electrical efficiencies of an LSC by fine-tuned optimization of the constituent fluorophore-containing interlayer resin.
View Article and Find Full Text PDFHepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene.
View Article and Find Full Text PDFBackground: Immediate loading of implant-supported full-arch rehabilitations has become routine practice when treating edentulous patients. The combination of static computer-aided implant surgery (s-CAIS) and digital prosthetic workflow could eliminate several treatment steps and facilitate prostheses delivery. The aim of this study is to evaluate the 1-year results of digitally prefabricated polymethyl methacrylate (PMMA) provisional prostheses without a cast for full-arch computer-assisted immediate loading.
View Article and Find Full Text PDFObjectives: To report assessments of four systematic reviews (SRs) on (i) clinical outcomes of all-ceramic implant-supported crowns (iSCs), (ii) production time, effectiveness, and costs of computer-assisted manufacturing (CAM), (iii) computer-assisted implant planning and surgery (CAIPS) time and costs, and (iv) patient-reported outcome measures (PROMS).
Material And Methods: An author group consisting of experienced clinicians and content experts discussed and evaluated the SRs and formulated consensus on the main findings, statements, clinical recommendations, and need for future research.
Results: All four SRs were conducted and reported according to PRISMA and detailed comprehensive search strategies in at least three bibliometric databases and hand searching.
Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSeS/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents.
View Article and Find Full Text PDFSol-gel synthesis is an acknowledged method for obtaining fine inorganic powders of a different nature. Implementation of water-soluble polymers as gel-forming media makes this technique even more readily available, especially in cases where conventional gel formation is suppressed. In polymer-salt solutions, polymers serve as scaffolds for salt constituents' bulk crystallization.
View Article and Find Full Text PDFWhile luminescent concentrators (LCs) are mainly designed to harvest sunlight and convert its energy into electricity, the same concept can be advantageous in alternative applications. Examples of such applications are demonstrated here by coupling the edge-guided light of high-performance LCs based on CuInSeS/ZnS quantum dots into optical fibers with emission covering visible-to-NIR spectral regions. In particular, a cost-efficient, miniature broadband light source for medical diagnostics, a spectral-conversion and light-guiding device for agriculture, and a large-area broadband tunable detector for telecommunications are demonstrated.
View Article and Find Full Text PDFColloidal quantum dots (QDs) have attracted considerable attention as promising materials for solution-processable electronic and optoelectronic devices. Copper indium selenium sulfide (CuInSe S or CISeS) QDs are particularly attractive as an environmentally benign alternative to the much more extensively studied QDs containing toxic metals such as Cd and Pb. Carrier transport properties of CISeS-QD films, however, are still poorly understood.
View Article and Find Full Text PDFThe resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
November 2018
Aim: To evaluate the efficacy and safety of tolpersione injection and oral formulations combined with NSAID over NSAID monotherapy in acute non-specific low back pain.
Material And Methods: In this randomized double blind study 239 patients were included in the per protocol analysis. The first 5 days of treatment, patients received tolpersione or placebo injection which was followed by per os administration of tolpersione/placebo tablet up to 14 days.
Auger recombination is a nonradiative three-particle process wherein the electron-hole recombination energy dissipates as a kinetic energy of a third carrier. Auger decay is enhanced in quantum-dot (QD) forms of semiconductor materials compared to their bulk counterparts. Because this process is detrimental to many prospective applications of the QDs, the development of effective approaches for suppressing Auger recombination has been an important goal in the QD field.
View Article and Find Full Text PDFThe use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands.
View Article and Find Full Text PDFTypical use of colloidal quantum dots (QDs) as bright, tunable phosphors in real applications relies on engineering of their surfaces to suppress the loss of excited carriers to surface trap states or to the surrounding medium. Here, we explore the utility of QDs in an application that actually exploits their propensity toward photoionization, namely within efficient and robust photocathodes for use in next-generation electron guns. In order to establish the relevance of QD films as photocathodes, we evaluate the efficiency of electron photoemission of films of a variety of compositions in a typical electron gun configuration.
View Article and Find Full Text PDFObjectives: The objective of this systematic review was to assess the 5-year and 10-year survival of resin-bonded fixed dental prostheses (RBBs) and to describe the incidence of technical and biological complications.
Materials And Methods: An electronic MEDLINE search complemented by manual searching was conducted to identify prospective and retrospective cohort studies and case series on RBBs with a mean follow-up time of at least 5 years. Patients had to have been examined clinically at the follow-up visit.
Quantum dots (QDs) of ternary I-III-VI compounds such as CuInS and CuInSe have been actively investigated as heavy-metal-free alternatives to cadmium- and lead-containing semiconductor nanomaterials. One serious limitation of these nanostructures, however, is a large photoluminescence (PL) line width (typically >300 meV), the origin of which is still not fully understood. It remains even unclear whether the observed broadening results from considerable sample heterogeneities (due, e.
View Article and Find Full Text PDFOne source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices.
View Article and Find Full Text PDFDent Mater
January 2017
Dent Mater
December 2016
Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources.
View Article and Find Full Text PDF