Neurol Neuroimmunol Neuroinflamm
January 2025
Background And Objectives: Multiple sclerosis (MS) can start as relapsing or progressive. While their clinical features and treatment responses are distinct, it has remained uncertain whether their pathomechanisms differ. A notable age-related effect on MS phenotype and response to immunotherapies is well acknowledged, but the underlying pathophysiologic reasons are yet to be fully elucidated.
View Article and Find Full Text PDFIPOM intraperitoneal hernia repair, in comparison with other abdominal wall reconstruction methods, has a number of significant advantages. Among them are a reduction in operative time, low rate of surgical site infections, quick rehabilitation, and good cosmetic results. At the same time, one of the main constraining factors for its widespread use is the rather high frequency of adhesion formation between the implant and the abdominal organs.
View Article and Find Full Text PDFIn this work, osteoconductive composite materials comprising a large volume fraction of a bioresorbable calcium phosphate ceramic (CaP) and a smaller amount of a polycaprolactone polymer (PCL) were studied as a degradable antibiotic carrier material for treatment of osteomyelitis. Beads loaded with 1 and 4wt.% vancomycin were prepared by admixing dissolved drug to an in situ synthesized dicalcium phosphate (DCP)-PCL or solution-mixed beta-tricalcium phosphate (βTCP)-PCL composite powder followed by high pressure consolidation of the blend at room temperature.
View Article and Find Full Text PDFRelease of antimicrobial agents from bone healing devices can dramatically reduce the risk of implant-associated infection. Here we report the fabrication and antimicrobial activity of a multifunctional load-bearing bioresorbable material that can provide mechanical support to the healing bone all while slowly releasing an antibiotic drug. Dense beta-tricalcium phosphate (β-TCP)-40 vol% polylactic acid (PLA) nanocomposite containing 1 wt% vancomycin (VH) was high pressure consolidated at 2.
View Article and Find Full Text PDFBiodegradable calcium phosphate-PCL nanocomposite powders with unusually high ceramic volume fractions (80-95%) and uniform PCL distribution were synthesized by a non-aqueous chemical reaction in the presence of the dissolved polymer. No visible polymer separation occurred during processing. Depending on the reagents combination, either dicalcium phosphate (DCP) or Ca-deficient HA (CDHA) was obtained.
View Article and Find Full Text PDFCalcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization.
View Article and Find Full Text PDFPolyethylene (PE) and silica are perhaps the simplest and most common organic and inorganic polymers, respectively. We describe, for the first time, a physically interpenetrating nanocomposite between these two elementary polymers. While polymer-silica composites are well known, the nanometric physical blending of PE and silica has remained a challenge.
View Article and Find Full Text PDF