The rapid spread of SARS-CoV-2 continues to impact humanity on a global scale with rising total morbidity and mortality. Despite the development of several effective vaccines, new products are needed to supply ongoing demand and to fight variants. We report herein a pre-specified interim analysis of the phase 2 portion of a Phase 2/3, randomized, placebo-controlled trial of a coronavirus virus-like particle (CoVLP) vaccine candidate, produced in plants that displays the SARS-CoV-2 spike glycoprotein, adjuvanted with AS03 (NCT04636697).
View Article and Find Full Text PDFBackground: Coronavirus-like particles (CoVLP) that are produced in plants and display the prefusion spike glycoprotein of the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are combined with an adjuvant (Adjuvant System 03 [AS03]) to form the candidate vaccine.
Methods: In this phase 3, multinational, randomized, placebo-controlled trial conducted at 85 centers, we assigned adults (≥18 years of age) in a 1:1 ratio to receive two intramuscular injections of the CoVLP+AS03 vaccine or placebo 21 days apart. The primary objective of the trial was to determine the efficacy of the CoVLP+AS03 vaccine in preventing symptomatic coronavirus disease 2019 (Covid-19) beginning at least 7 days after the second injection, with the analysis performed after the detection of at least 160 cases.
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are being deployed, but the global need greatly exceeds the supply, and different formulations might be required for specific populations. Here we report Day 42 interim safety and immunogenicity data from an observer-blinded, dose escalation, randomized controlled study of a virus-like particle vaccine candidate produced in plants that displays the SARS-CoV-2 spike glycoprotein (CoVLP: NCT04450004 ). The co-primary outcomes were the short-term tolerability/safety and immunogenicity of CoVLP formulations assessed by neutralizing antibody (NAb) and cellular responses.
View Article and Find Full Text PDFBackground: Seasonal influenza remains a substantial public health threat despite the availability of egg-derived and other vaccines. Plant-based manufacturing might address some of the limitations of current vaccines. We describe two phase 3 efficacy studies of a recombinant quadrivalent virus-like particle (QVLP) influenza vaccine manufactured in plants, one in adults aged 18-64 years (the 18-64 study) and one in older people aged 65 years and older (the 65-plus study).
View Article and Find Full Text PDFA growing body of evidence supports the importance of T cell responses to protect against severe influenza, promote viral clearance, and ensure long-term immunity. Plant-derived virus-like particle (VLP) vaccines bearing influenza hemagglutinin (HA) have been shown to elicit strong humoral and CD4 T cell responses in both pre-clinical and clinical studies. To better understand the immunogenicity of these vaccines, we tracked the intracellular fate of a model HA (A/California/07/2009 H1N1) in human monocyte-derived macrophages (MDMs) following delivery either as VLPs (H1-VLP) or in soluble form.
View Article and Find Full Text PDFBackground: Serum hemagglutination inhibition (HAI) and microneutralization (MN) antibodies are often used as a correlate of protection for influenza. However, these manual assays are labor-intensive and difficult to standardize due to variability in biologic reagents used and subjective interpretation of the results.
Methods: Sera with known HAI and MN titers were used to assess a novel test based on the inhibition of fluorescence 'dequenching'.
Plant-made virus-like particle (VLP) vaccines that display wild-type influenza hemagglutinin (HA) are rapidly advancing through clinical trials. Produced by transient transfection of Nicotiana benthamiana, these novel vaccines are unusually immunogenic, eliciting both humoral and cellular responses. Here, we directly visualized VLPs bearing either HA trimers derived from strains A/California/7/2009 or A/Indonesia/5/05 using cryo-electron microscopy and determined the 3D organization of the VLPs using cryo-electron tomography.
View Article and Find Full Text PDFIntroduction: Plant-made virus-like particles (VLP) bearing influenza virus hemagglutinins (HA) are novel vaccine candidates that induce cross-reactive humoral and poly-functional T cell responses. To better understand the mechanisms that underlie this broad immunogenicity we studied early interactions of VLPs bearing either H1 (A/California/07/2009 (H1N1)) or H5 (A/Indonesia/05/2005 (H5N1)) with a human monocytoid cell line (U-937 cells) and human monocyte-derived macrophages (MDMs) as model antigen-presenting cells (APC).
Methods And Results: Using Vibrio cholerae sialidase and lectins that target α2,6- (Sambucus nigra lectin) or α2,3-linked sialic acids (Maackia amurensis lectin I), we demonstrated that VLPs bind to these APCs in a sialic acid-dependent manner.
A study of the expression of activated markers in peripheral blood lymphocytes makes it possible to carry out continuous monitoring of the immune system of a patient by means of a non-invasive method. This is of great importance for patients with acute myocarditis with immunopathological processes. However, there are very few papers in medical literature which are dedicated to this problem.
View Article and Find Full Text PDFThe influence of adenosine (1.0 &mgr;M) on generation of reactive oxygen species and myeloperoxidase activity of adherent phagocytes from healthy donors and asthmatic patients was studied in vitro. Adenosine enhanced NADP-oxidase activity and inhibited myeloperoxidase in leukocytes from healthy donors.
View Article and Find Full Text PDF