Biomed Opt Express
September 2022
Dynamic optical coherence elastography (OCE) tracks mechanical wave propagation in the subsurface region of tissue to image its shear modulus. For bulk shear waves, the lateral resolution of the reconstructed modulus map (i.e.
View Article and Find Full Text PDFSkin broadly protects the human body from undesired factors such as ultraviolet radiation and abrasion and helps conserve body temperature and hydration. Skin's elasticity and its level of anisotropy are key to its aesthetics and function. Currently, however, treatment success is often speculative and subjective, and is rarely based on skin's elastic properties because there is no fast and accurate non-contact method for imaging of skin's elasticity.
View Article and Find Full Text PDFIn this work, we report that gold nanorods coated with hydrophobically-modified mesoporous silica shells not only enhance photoacoustic (PA) signal over unmodified mesoporous silica coated gold nanorods, but that the relationship between PA amplitude and input laser fluence is strongly nonlinear. Mesoporous silica shells of ~14 nm thickness and with ~3 nm pores were grown on gold nanorods showing near infrared absorption. The silica was rendered hydrophobic with addition of dodecyltrichlorosilane, then re-suspended in aqueous media with a lipid monolayer.
View Article and Find Full Text PDFPhotoacoustic (PA) imaging-a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound-has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions.
View Article and Find Full Text PDFThe erratum corrects an error in the y-axis labels of Fig. 4 and Fig. S2.
View Article and Find Full Text PDFComputed ultrasound tomography in echo mode (CUTE) allows determining the spatial distribution of speed-of-sound (SoS) inside tissue using handheld pulse-echo ultrasound (US). This technique is based on measuring the changing phase of beamformed echoes obtained under varying transmit (Tx) and/or receive (Rx) steering angles. The SoS is reconstructed by inverting a forward model describing how the spatial distribution of SoS is related to the spatial distribution of the echo phase shift.
View Article and Find Full Text PDFPhotodynamic therapy (PDT), a spatially localized phototoxic therapy that involves irradiation of a photosensitizer (PS) with specific wavelengths of light, has shown exceptional promise in impacting cancer treatment outcomes, particularly oral cancer. To reduce PDT outcome variability, attempts toward image-guided personalized PDT are being pursued by monitoring PS uptake either via fluorescence or photoacoustic imaging (PAI), a nonionizing modality dependent on optical absorption properties of the tissue. PAI-guided PDT requires a near-infrared contrast agent for deep tissue imaging with minimal photobleaching effect.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a phototoxic treatment with high spatial and temporal control and has shown tremendous promise in the management of cancer due to its high efficacy and minimal side effects. PDT efficacy is dictated by a complex relationship between dosimetry parameters such as the concentration of the photosensitizer at the tumor site, its spatial localization (intracellular or extracellular), light dose and distribution, oxygen distribution and concentration, and the heterogeneity of the inter- and intratumoral microenvironment. Studying and characterizing these parameters, along with monitoring tumor heterogeneity pre- and post-PDT, provides essential data for predicting therapeutic response and the design of subsequent therapies.
View Article and Find Full Text PDFPicosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.
View Article and Find Full Text PDFA new and accurate method for the thermal characterization of thermoelectric liquids is proposed. The experiment is based on a self-generated voltage due to the Seebeck effect. This voltage is provided by the sample when one of its two faces is thermally excited using a modulated laser.
View Article and Find Full Text PDF