Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated.
View Article and Find Full Text PDFIntroduction: Inflammation within the tumour microenvironment correlates with increased invasiveness and poor prognosis in many types of cancer, including breast cancer. We have previously demonstrated that activation of a mouse mammary tumour virus (MMTV)-driven inducible fibroblast growth factor receptor 1 (iFGFR1) transgene in mammary epithelial cells results in an inflammatory response characterised by induction of inflammatory genes in the mammary gland. Specifically, we have observed increased levels of IL-1beta expression in the mammary gland following activation of iFGFR1 and have used the iFGFR1 model to elucidate the function of IL-1beta in promoting iFGFR1-induced mammary lesions.
View Article and Find Full Text PDFIdentifying and selectively breeding for improved traits is one of the ultimate goals of genetic research in agriculturally important species. Genome characterization and analysis are important first steps in this process. Genetic linkage maps based on the linear order of polymorphic DNA markers are typically developed through statistical analysis of inheritance patterns in pedigreed families.
View Article and Find Full Text PDF